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Resume

This thesis addresses option pricing problem in three separate and self-contained pa-

pers:

A. The Binomial CEV Model and the Greeks

This article compares alternative binomial approximation schemes for computing

the option hedge ratios studied by Pelsser and Vorst (1994), Chung and Shackle-

ton (2002), and Chung et al. (2011) under the lognormal assumption, but now con-

sidering the constant elasticity of variance (CEV) process proposed by Cox (1975)

and using the continuous-time analytical Greeks recently offered by Larguinho et

al. (2013) as the benchmarks. Among all the binomial models considered in this

study, we conclude that an extended tree binomial CEV model with the smooth and

monotonic convergence property is the most efficient method for computing Greeks

under the CEV diffusion process because one can apply the two-point extrapolation

formula suggested by Chung et al. (2011).

B. Valuing American-Style Options under the CEV Model: An Integral Represen-

tation Based Method

This article derives a new integral representation of the early exercise boundary

for valuing American-style options under the constant elasticity of variance (CEV)

model. An important feature of this novel early exercise boundary characterization
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is that it does not involve the usual (time) recursive procedure that is commonly

employed in the so-called integral representation approach well known in the liter-

ature. Our non-time recursive pricing method is shown to be analytically tractable

under the local volatility CEV process and the numerical experiments demonstrate

its robustness and accuracy.

C. A Note on Options and Bubbles under the CEV Model: Implications for Pric-

ing and Hedging

The discounted price process under the constant elasticity of variance (CEV) model

is not a martingale for options markets with upward sloping implied volatility smiles.

The loss of the martingale property implies the existence of (at least) two option

prices for the call option, that is the price for which the put-call parity holds and the

price representing the lowest cost of replicating the payoff of the call. This article

derives closed-form solutions for the Greeks of the risk-neutral call option pricing

solution that are valid for any CEV process exhibiting forward skew volatility smile

patterns. Using an extensive numerical analysis, we conclude that the differences

between the call prices and Greeks of both solutions are substantial, which might

yield significant errors of analysis for pricing and hedging purposes.

JEL Classification: G13

Keywords: CEV model; Greeks; Binomial schemes; Numerical differentiation; Ex-

tended tree; Option pricing; American-style options; Early exercise boundary; Iterative

method; Bubbles; Put-call parity; Local martingales.
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Resumo

Esta tese aborda a avaliação de opções em três artigos distintos:

A. The Binomial CEV Model and the Greeks

Este artigo compara diferentes aproximações binomiais para o cálculo dos Greeks

das opções estudadas por Pelsser and Vorst (1994), Chung and Shackleton (2002),

e Chung et al. (2011), no âmbito da distribuição lognormal, mas agora considerando

o processo constant elasticity of variance (CEV) proposto por Cox (1975), uti-

lizando os Greeks analı́ticos em tempo continuo, recentemente propostos por Larguinho

et al. (2013) como referência. Entre os modelos binomiais considerados neste es-

tudo, concluimos que um modelo extended tree binomial CEV com uma aproximação

convergente e monotona é o método mais eficiente para o cálculo dos Greeks

no âmbito do processo de difusão CEV porque podemos aplicar a fórmula de

extrapolação de dois pontos, sugerido por Chung et al. (2011).

B. Valuing American-Style Options under the CEV Model: An Integral Represen-

tation Based Method

Este artigo deriva uma nova representação integral da barreira de exercı́cio ante-

cipado para a avaliação das opções Americanas no âmbito do modelo constant

elasticity of variance (CEV), um importante aspeto desta nova caracterização da

barreira de exercı́cio antecipado é que este não envolve o usual processo recur-
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sivo que é habitualmente aplicado e conhecido na literatura como a abordagem

de representação integral. O nosso método de avaliação não recursivo é de fácil

tratamento analı́tico sob o processo de difusão CEV e os resultados numéricos

demonstram a sua rubustez e precisão.

C. A Note on Options and Bubbles under the CEV Model: Implications for Pric-

ing and Hedging

O processo de desconto de preço no âmbito do modelo constant elasticity of vari-

ance (CEV) não é um martingale para os mercados de opções com uma volatility

smile de inclinação ascendente. A perda da propriedade martingale implica a ex-

istência de (pelo menos) dois preços de opção para a opção de compra, que é o

preço para qual se verifica a paridade put-call e este preço representa o menor

custo de replicação do payoff da call. Este artigo deriva as soluções em fórmula

fechada para os Greeks da opção call no risco neutral que são válidas para qual-

quer processo CEV que possui padrões de enviesamento ascencentes. Tendo por

base uma analise numerica extensiva, concluı́mos que a diferença entre os preços

da call e os Greeks de ambas as soluções são substanciais, o que pode gerar

erros significativos de análises no calculo do preço da call e dos Greeks.

JEL Classification: G13

Keywords: Modelo CEV; Greeks; Árvores binomiais; Diferenciação numérica; Árvore

estendida; avaliação de opções; opções Americanas; Barreira de exercı́cio anteci-

pado; méthodo iterativo; Bolhas; Paridade put-call ; Martingales.
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1. Introduction

This thesis addresses option pricing problem in three separate and self-contained pa-

pers.

The main purpose of the first article is to revisit the analysis performed by Pelsser

and Vorst (1994), Chung and Shackleton (2002), and Chung et al. (2011) for choosing

appropriate methods when calculating option hedge ratios under the GBM assumption,

but now using the constant elasticity of variance (henceforth, CEV) diffusion process

proposed by Cox (1975). We note that while there are several papers in the literature

comparing the convergence behavior of alternative binomial schemes under the GBM

assumption, such extension to the CEV model is still missing mainly due to the absence

of analytical solutions for Greeks of European-style options under this modeling setup.

Such extension to the CEV model is now possible given the closed-form solutions of

Greeks recently offered by Larguinho et al. (2013).

Option traders need to repeatedly and accurately calculate options sensitivity mea-

sures (usually known as Greeks) to successfully implement hedging strategies in their

risk management activities, especially in the case of naked short options positions.

This is so mainly because the option’s risk characteristics change dynamically as the

underlying stock price and the remaining time to maturity change.

We review the argument of Chung and Shackleton (2002), who demonstrated that the
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Binomial Black-Scholes (henceforth, BBS) model advocated by Broadie and Detemple

(1996) outperforms either a straight extended tree or a BBS extended tree. While such

argument is true under the GBM setup considered in Chung and Shackleton (2002), we

find that the use of a straight extended tree design is preferable for calculating Greeks

under the state-dependent volatility CEV process, since it is better able to efficiently

capture the leverage and volatility smile effects frequently found in the options mar-

kets. However, this is true only when we avoid the use of a Richardson extrapolation

technique. Overall, we conclude that the use of an extended tree binomial CEV model

possessing the smooth and monotonic convergence property substantially enhances

the accuracy of Greeks because we can apply the extrapolation formula suggested by

Chung et al. (2011).

The main aim of the second paper is to propose a simple iterative method to determine

the optimal exercise boundary for valuing American-style options under the CEV diffu-

sion process following the insights offered by Little et al. (2000) and Kim et al. (2013)

in the context of the log-normal assumption. It is well known that the early exercise

feature attached to American-style contingent claims turns the option pricing problem

much more complex than its European-style counterpart, mainly because the early

exercise boundary is not known ex-ante (i.e., before the solution of the pricing prob-

lem) and, therefore, it must be determined simultaneously as the solution of the same

boundary value problem. In other words, the valuation of such claims requires the iden-

tification of the set of prices and times at which it is optimal to exercise the contract. To

overcome this challenging difficulty, several alternative valuation methodologies have

been proposed in the literature.

A common feature of the option pricing methodologies based on the integral represen-

tation approach is that they use a discretization scheme of a given number of implicit

integral equations defining the optimal exercise points of the early exercise boundary.

2



The numerical procedure is initiated at the maturity date with appropriate boundary

conditions and then the optimal stopping boundary is computed through a time recur-

sive iterative method using the whole set of integral equations (i.e., the boundary is

computed recursively via backward induction). Once such optimal exercise boundary

is obtained, calculations of the early exercise premiums and option prices are then per-

formed. Even though our method relies also on the integral representation approach, it

uses instead a non-time recursive iterative method similar to the one employed by Kim

et al. (2013) in a GBM modeling setup. Our numerical results show that the proposed

method is accurate and efficient under the CEV model, thus being a viable alternative

to the aforementioned option pricing methodologies under such local volatility model.

In the third article, we will focus our analysis on the so-called constant elasticity of vari-

ance (hereafter, CEV) model of Cox (1975), Cox and Ross (1976) and Emanuel and

MacBeth (1982) to provide further insight on option pricing in markets with bubbles.

This local stochastic volatility model is quite popular among researchers and practi-

tioners because it offers several appealing features, namely: (i) the state-dependent

volatility assumption of the CEV model allows volatility to be modeled using a simple

and parsimonious specification, without the need of introducing an additional stochastic

process as in the case of the Heston (1993) stochastic volatility model; (ii) it is known

to be consistent with the existence of a negative correlation between stock returns

and realized volatility (leverage effect) observed, for instance, in Black (1976), Beckers

(1980), Christie (1982) and Bekaert and Wu (2000); (iii) it is able to accommodate the

inverse relation between the implied volatility and the strike price of an option contract

(implied volatility skew) documented, for example, in Dennis and Mayhew (2002) and

Bakshi et al. (2003).

Even though the martingale property under the CEV model is preserved in the case of

options markets exhibiting volatility smirk patterns (i.e., with downward sloping implied
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volatility smiles), the discounted price process under the CEV model is not a martin-

gale for options markets exhibiting forward skew patterns (i.e., with upward sloping

implied volatility smiles), as was first documented in Emanuel and MacBeth (1982),

Lewis (2000) and Delbaen and Shirakawa (2002). Cox and Hobson (2005) and Hes-

ton et al. (2007) offered an economic interpretation for this technical irregularity of the

CEV model as evidence for the presence of a stock price bubble. Heston et al. (2007)

further show that this loss of the martingale property implies the existence of (at least)

two option prices for the call option: the price for which the put-call parity holds and the

price representing the lowest cost of replicating the payoff of the call.

Since the CEV process is widely used in many option pricing applications, the main

aim of this article is to shed further light on the implications for option pricing and hedg-

ing purposes of the existence of multiple option prices under such state-dependent

volatility setup. To accomplish this purpose, we offer novel closed-form solutions of

Greeks for the risk-neutral call option pricing formula proposed by Heston et al. (2007)

and for any elasticity parameter of a CEV process. This is achieved by combining

the new sensitivity measures derived in this paper for the bubble formula—which can

be simply expressed as the difference between the solution given by Emanuel and

MacBeth (1982) and the cheapest solution of Heston et al. (2007)—and the analyt-

ical formulae of Greeks provided by Larguinho et al. (2013) for the CEV model and

expressed in terms of the noncentral chi-square distribution function. Hence, our for-

mulas can be applied to any CEV process possessing upward sloping implied volatility

smiles, thus making the formulas recently presented in Veestraeten (2017) a special

case of our general analytical solutions. This should be important for both academics

and practitioners since such implied volatility behaviour is a characteristic that is often

observed in some commodity spot prices and futures options—see, for example, Choi

and Longstaff (1985), Geman and Shih (2009) and Dias and Nunes (2011).
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This thesis proceeds as follows. Chapter 2 presents the first paper. Chapter 3 presents

the second paper. Chapter 4 presents the third paper. Finally, Chapter 5 concludes.
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2. The Binomial CEV Model and the Greeks∗

Abstract: This article compares alternative binomial approximation schemes for com-

puting the option hedge ratios studied by Pelsser and Vorst (1994), Chung and Shack-

leton (2002), and Chung et al. (2011) under the lognormal assumption, but now con-

sidering the constant elasticity of variance (CEV) process proposed by Cox (1975)

and using the continuous-time analytical Greeks recently offered by Larguinho et al.

(2013) as the benchmarks. Among all the binomial models considered in this study,

we conclude that an extended tree binomial CEV model with the smooth and mono-

tonic convergence property is the most efficient method for computing Greeks under

the CEV diffusion process because one can apply the two-point extrapolation formula

suggested by Chung et al. (2011).

JEL Classification: G13

Keywords: CEV model; Greeks; Binomial schemes; Numerical differentiation; Ex-

tended tree.
∗This paper is a joint work with José Carlos Dias and was published in Journal of Futures Markets.
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2.1 Introduction

Option traders need to repeatedly and accurately calculate options sensitivity mea-

sures (usually known as Greeks) to successfully implement hedging strategies in their

risk management activities, especially in the case of naked short options positions.

This is so mainly because the option’s risk characteristics change dynamically as the

underlying stock price and the remaining time to maturity change.

Given the absence of closed-form solutions for pricing and hedging many financial

option contracts possessing early exercise features and/or exotic payoffs, binomial

models—such as the one initially proposed by Cox et al. (1979)—are commonly used

by both academics and practitioners to value and hedge such derivative products. The

computation of the required Greek measures is then often performed through a numer-

ical differentiation procedure. However, it is well known that the use of such scheme

for computing Greeks (and prices) may be flawed by the nature of the binomial dis-

cretization behavior observed in tree methods. See, for instance, Pelsser and Vorst

(1994), Chung and Shackleton (2002, 2005), and Chung et al. (2011) for details under

the geometric Brownian motion (henceforth, GBM) setup.

The main purpose of this article is to revisit the analysis performed by Pelsser and

Vorst (1994), Chung and Shackleton (2002), and Chung et al. (2011) for choosing

appropriate methods when calculating option hedge ratios under the GBM assumption,

but now using the constant elasticity of variance (henceforth, CEV) diffusion process

proposed by Cox (1975). We note that while there are several papers in the literature

comparing the convergence behavior of alternative binomial schemes under the GBM

assumption, such extension to the CEV model is still missing mainly due to the absence

of analytical solutions for Greeks of European-style options under this modeling setup.
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Such extension to the CEV model is now possible given the closed-form solutions of

Greeks recently offered by Larguinho et al. (2013).

We recall that such state-dependent volatility modeling framework was introduced in

the option pricing literature by Cox (1975) as a way to overcome the undesirable con-

stant volatility assumption underlying the Black and Scholes (1973) and Merton (1973)

setup. The importance of the CEV model for traders is justified by its ability to accom-

modate two empirical stylized facts commonly observed in options markets, namely:

The existence of an inverse relation between stock returns and realized volatility (lever-

age effect), as highlighted, for instance, by Black (1976) and Bekaert and Wu (2000);

and the negative correlation between the implied volatility and the strike price of an

option contract (implied volatility skew), as documented, for example, in Dennis and

Mayhew (2002). Therefore, it is with no surprise that the CEV model is still widely used

nowadays in a variety of contexts, e.g. by Chung and Shih (2009), Nunes (2009), Ruas

et al. (2013), and Ballestra and Cecere (2015) for pricing and hedging plain-vanilla

American-style options, or by Chung et al. (2013a,b), Tsai (2014), Dias et al. (2015),

and Nunes et al. (2015) in the case of barrier option contracts, just to mention a few.

In this study, we review the argument of Chung and Shackleton (2002), who demon-

strated that the Binomial Black-Scholes (henceforth, BBS) model advocated by Broadie

and Detemple (1996) outperforms either a straight extended tree or a BBS extended

tree. While such argument is true under the GBM setup considered in Chung and

Shackleton (2002), we find that the use of a straight extended tree design is prefer-

able for calculating Greeks under the state-dependent volatility CEV process, since it

is better able to efficiently capture the leverage and volatility smile effects frequently

found in the options markets. However, this is true only when we avoid the use of a

Richardson extrapolation technique. Overall, we conclude that the use of an extended

tree binomial CEV model possessing the smooth and monotonic convergence property
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substantially enhances the accuracy of Greeks because we can apply the extrapolation

formula suggested by Chung et al. (2011).

Even though we are examining only approximation methods of Greeks for European-

style options against their closed-form continuous-time benchmarks borrowed from

Larguinho et al. (2013), the results should still be important for other option contracts.

Options with early exercise features were not analyzed here given the absence of an-

alytical solutions for prices and Greeks. However, our numerical experiments and dis-

cussions seem to suggest that the results highlighted in this paper are a consequence

of the method used for evaluation and not the option style itself. Hence, these results

should be also of interest when pricing and hedging American-style option contracts.

The remainder of the paper is organized as follows. Section 2.2 presents the theoretical

CEV modeling setup and the binomial tree schemes that will be used for approximating

the CEV continuous-time process, which are then numerically tested in Section 2.3.

Finally, Section 3.5 summarizes the concluding remarks.

2.2 Five methods for computing Greeks under the binomial

CEV model

For the analysis to remain self-contained, the next three subsections provide, respec-

tively, a brief summary of the CEV model setup, the adopted binomial tree method for

approximating the CEV diffusion process, and the five competing methods considered

for calculating Greeks under the binomial CEV model.
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2.2.1 CEV model setup

The CEV process proposed by Cox (1975) assumes that the asset price {St, t ≥ 0} is

governed (under the risk-neutral probability measure Q) by the stochastic differential

equation

dSt = (r − q)St dt+ δ S
β/2
t dWQ

t , (2.1)

for δ ∈ R+ and β ∈ R, and where r ≥ 0 denotes the instantaneous riskless interest rate,

q ≥ 0 represents the dividend yield for the underlying asset price, and WQ
t ∈ R is a

standard Brownian motion under Q, initialized at zero and generating the augmented,

right continuous and complete filtration F = {Ft : t ≥ t0}.2.1

The stochastic differential equation (4.1) nests the lognormal assumption of Black and

Scholes (1973) and Merton (1973) (if β = 2), as well as the absolute diffusion (when

β = 0) and the square-root diffusion (for β = 1) models of Cox and Ross (1976), as

special cases. We further notice that elasticity values of β < 2 (i.e. with a direct lever-

age effect) are observed for stock index options and crude oil prices, whereas values

of β > 2 (i.e. with an inverse leverage effect) are expected for some commodity spot

prices and futures options with upward sloping implied volatility smiles, as documented,

for instance, in Choi and Longstaff (1985), Davydov and Linetsky (2001), Geman and

Shih (2009), and Dias and Nunes (2011).2.2 In this paper, we will focus on equity op-

tions and, hence, we assume a CEV process with β < 2.
2.1We recall that the model parameter δ is a positive constant that can be interpreted as the scale parameter fixing

the initial instantaneous volatility at the reference time t0 = 0, i.e. σ0 = σ(S0) = δ S
β/2−1
0 . This calibration

procedure is standard in the literature and it ensures that the differences found between CEV models with different
β values stem purely from the effect of the relationship between volatility and price levels.

2.2For additional background on the CEV process see, for instance, Cox (1975), Emanuel and MacBeth (1982),
Schroder (1989), Davydov and Linetsky (2001), and Larguinho et al. (2013).
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2.2.2 Approximating the CEV process through a lattice scheme

To approximate the CEV diffusion process with a binomial tree method we adopt the

insights of Nelson and Ramaswamy (1990) and Chung and Shih (2009, Page 2145).

First, we consider the x-transform x(S) = Sα/ (αδ), with α = 1 − β/2, and apply Itô’s

lemma to obtain

dxt =

[
Sα−1
t

δ
(r − q)St +

α− 1

2
δS−α

t

]
dt+ dWQ

t . (2.2)

Replacing the inverse transform S = (xαδ)1/α in equation (2.2) results in a new process

x with a constant volatility equal to 1:

dxt =

[
xtα (r − q) +

α− 1

2xtα

]
dt+ dWQ

t . (2.3)

Figure 1 shows a simple two-period binomial x-tree with x := x(S0,0), and where Si,j

denotes the underlying asset value of an option contract in period i and state j.2.3 As

usual, the time to maturity of the option contract is divided into n evenly-spaced time

points such that the time between intervals is ∆t := (T − t0)/n. Given the current value

of x, the approximation of x in the following time step is either x+ = x +
√
∆t for an

up movement or x− = x −
√
∆t for a down movement. Repeating this procedure, we

construct a recombined binomial tree for the x process.

[Please insert Figure 1 about here.]

Then, using the inverse transform S± = f(x±) = (x±αδ)1/α if x± > 0, or S± = 0 if

x± ≤ 0, results in a recombined binomial grid for the underlying asset price as depicted
2.3We recall that the subscript j indicates the number of up moves that the underlying asset has made from its

initial price S0,0.

11



in Figure 2.2.2.4

[Please insert Figure 2.2 about here.]

Following Chung and Shih (2009, Page 2145), the risk-neutral probability p+ of an

upward movement is then derived as

p+ :=


Se(r−q)∆t−S−

S+−S− ⇐ x > 0 and 0 ≤ Se(r−q)∆t−S−

S+−S− ≤ 1

0 ⇐ x ≤ 0 or Se(r−q)∆t−S−

S+−S− < 0

1 ⇐ x > 0 and Se(r−q)∆t−S−

S+−S− > 1

. (2.4)

Finally, we compute the corresponding option values V (Si,j) over all the nodes of the

tree by applying the usual terminal condition V (Sn,j) = max(ϕK − ϕSn,j, 0) of a call (if

ϕ = −1) or put (if ϕ = 1), with K being the option’s strike price, and then using the

standard backward recursive procedure to obtain the time-t0 option price V (S0,0).

2.2.3 Five methods for computing Greeks

The numerical differentiation method for calculating the hedge ratio delta (∆) relies on

the introduction of a small perturbation parameter on the current asset value S0,0. More

specifically, one typically chooses a small positive number h and constructs new trees

with novel initial underlying asset values S0,0 = S0,0 + h and S0,0 = S0,0 − h. Assuming

that V (S0,0 + h, T ) and V (S0,0 − h, T ) are the initial theoretical option values obtained

from the corresponding trees for contracts expiring at time T , then ∆ is approximated
2.4As highlighted by Davydov and Linetsky (2001, pg. 955), zero is an exit boundary whenever 1 ≤ β < 2,

while for β < 1 zero is a regular boundary point that is specified as a killing boundary by adjoining a killing
boundary condition. Hence, the inverse transform condition S± = 0 if x± ≤ 0 is imposed to ensure that the CEV
process is killed at the zero boundary.
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by

∆ =
V (S0,0 + h, T )− V (S0,0 − h, T )

2h
, (2.5)

whereas the second derivative of the option price with respect to the underlying asset,

i.e. gamma (Γ), is approximated by

Γ = 2

[
V (S0,0 + h, T )− V (S0,0, T )

h
− V (S0,0, T )− V (S0,0 − k, T )

k

]
/(h+ k), (2.6)

with k being a second small (positive) perturbation parameter.2.5

Pelsser and Vorst (1994) consider also the binomial extended tree method, which ex-

tends the original lattice scheme to nodes where both i and j may now be negative for

dates prior to time t0 = 0, as shown in Figure 2.3.

[Please insert Figure 2.3 about here.]

After computing the option values over the whole set of nodes of the binomial extended

tree, we can approximate ∆ and Γ by

∆ =
V (S0,1)− V (S0,−1)

S0,1 − S0,−1

, (2.7)

and

Γ = 2

[
V (S0,1)− V (S0,0)

S0,1 − S0,0

− V (S0,0)− V (S0,−1)

S0,0 − S0,−1

]
/(S0,1 − S0,−1). (2.8)

Pelsser and Vorst (1994) compare both methods for calculating ∆ and Γ under the GBM

framework and conclude that the binomial extended tree method is not only faster than

the numerical differentiation method, but also more accurate. As argued by Chung and

Shackleton (2002), the implementation of the numerical differentiation method fails for
2.5Typically k is set equal to h, but they might be different.
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∆ because the tree takes discrete payoffs, and, therefore, for a small perturbation pa-

rameter h, the option value is not convex in S0,0. Hence, ∆ is locally constant because

the option price itself is a locally linear function of the underlying asset price. For the

case of Γ, the numerical differentiation method might even result in approximations that

make no sense at all.

While Pelsser and Vorst (1994) focus their analysis on ∆ and Γ, Chung and Shackleton

(2002) consider also the partial derivative with respect to time, i.e. theta (θ), which is

approximated as

θ =
V (S0,0, T − τ)− V (S0,0, T + τ)

2τ
, (2.9)

with τ being another small (positive) perturbation parameter, and

θ =
V (S−2,−1)− V (S2,1)

4τ
, (2.10)

under the numerical differentiation method and the binomial extended tree method,

respectively.

The binomial extended tree method not only provides a faster computation, but also re-

sults in Greek sensitivity measures that do not suffer from the perturbation discreteness

problem associated with the numerical differentiation method. However, the binomial

extended tree method still possesses a remaining error that depends on the magnitude

of the tree intervals chosen in time. Even though the use of fine trees instead of sparse

trees reduces the discreteness errors attached to the binomial extended tree method,

it has the shortcoming of increasing the corresponding computational burden.

As an alternative for computing Greeks, Chung and Shackleton (2002) suggest the

use of the BBS method offered by Broadie and Detemple (1996), which essentially

introduces Black-Scholes analytical option prices at the time step just before maturity
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originating a more accurate tree for option pricing purposes. Chung and Shackleton

(2002) show that this method not only yields more accurate prices, but it also allows

accurate calculation of Greek sensitivity measures under the GBM assumption. This

is so mainly because the BBS method circumvents the pitfall of the piecewise linearity

attached to the standard binomial option pricing model by introducing nonlinear and

smoothly differentiable Black-Scholes functions into the continuation value of the final

pricing nodes before maturity.

Another valuation approach explored in this study, usually known as the binomial CEV

method (henceforth, BCEV method), is inspired by the BBS pricing scheme by includ-

ing CEV option prices into the holding value of the penultimate nodes of the tree. To cal-

culate such option values we use the closed-form solutions offered by Schroder (1989)

and the Benton and Krishnamoorthy (2003) algorithm for computing the required non-

central chi-square distribution functions, as suggested in Larguinho et al. (2013). Then,

both the numerical differentiation and the binomial extended tree schemes are imple-

mented via the BCEV pricing methodology.

Chung et al. (2011) suggest that one can apply the standard Richardson extrapola-

tion technique to enhance the accuracy of binomial Greeks if their convergence pat-

terns are monotonic and smooth. The monotonic convergence is attractive because

more time steps guarantee more accurate prices. Furthermore, smooth convergence

is also desirable because an extrapolation formula can be used to enhance the accu-

racy. Therefore, our fifth and last method applies the two-point extrapolation formula

provided by Chung et al. (2011) to the BCEV extended tree scheme, since this is a

binomial model accommodating the monotonic and smooth convergence property.2.6

2.6As highlighted by Chung and Shih (2009, Footnote 11), the convergence pattern of the BCEV price to the
accurate option price is the same as that of the BBS method, i.e. the BCEV price converges monotonically and
smoothly to the accurate value at a rate of O (1/n). Therefore, it is possible to apply an extrapolation formula to
enhance the accuracy of the extended tree BCEV prices and Greeks.
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2.3 Numerical results

Armed with the five aforementioned methods, it is now possible to compare the robust-

ness of each one for computing Greeks of standard European-style option contracts

under the CEV model against the analytical solutions of Greek measures borrowed

from Larguinho et al. (2013). Hereafter, to provide a clear identification of each bino-

mial method to be tested, we will name each one as follows:

i. NumDiff computes Greeks through a standard binomial scheme using the nu-

merical differentiation method.

ii. ExtTree computes Greeks through an extended binomial tree scheme.

iii. NumDiffBCEV computes Greeks through a standard binomial scheme using the

numerical differentiation method, though calculating the continuation value of the

penultimate nodes of the tree via the closed-form solutions of Schroder (1989).

iv. ExtTreeBCEV computes Greeks through an extended binomial tree scheme,

though calculating the continuation value of the penultimate nodes of the tree

via the closed-form solutions of Schroder (1989).

v. ExtTreeBCEVR computes Greeks by applying the two-point extrapolation for-

mula suggested by Chung et al. (2011) to the ExtTreeBCEV method.

vi. Closed-form solution stands for the analytical formulae of Greek measures re-

cently offered by Larguinho et al. (2013).

We recall that the continuation values of the penultimate nodes of the NumDiffBCEV

and ExtTreeBCEV trees are calculated using the Schroder (1989) option pricing so-

lutions which require the computation of noncentral chi-square distribution functions.
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Similarly, the delta and theta analytical formulas provided by Larguinho et al. (2013)

contains also such distribution laws, while their gamma solutions involve only probabil-

ity density functions of a noncentral chi-square distribution. As expected, the numerical

efficiency of the NumDiffBCEV, ExtTreeBCEV and ExtTreeBCEVR methods depends

on the accuracy and speed of computation of the Schroder (1989) closed-form solu-

tions. To the best of our knowledge—see, for instance, the numerical analysis per-

formed by Larguinho et al. (2013, Section 4)—, the iterative procedure of Benton and

Krishnamoorthy (2003, Algorithm 7.3) clearly offers the best speed-accuracy trade-off

for evaluating option prices and Greeks under the (unrestricted) CEV model. Based

on these insights and in order to make fair comparisons between competing methods,

the necessary noncentral chi-square distribution functions appearing in the benchmark

values of Larguinho et al. (2013) and in the NumDiffBCEV, ExtTreeBCEV and Ext-

TreeBCEVR methods are all calculated via the Benton and Krishnamoorthy (2003)

algorithm.2.7

For illustrative purposes, we consider the constellation of parameters used by Pelsser

and Vorst (1994) and Chung and Shackleton (2002), but augmented by the β param-

eter. More specifically, we assume that {K,T, σ0, r, q} = {100, 1, 0.25, 0.09, 0} over a

small range of current asset values S0,0 using n = 50. Moreover, we set the pertur-

bation parameters h = k = 0.01 and τ = 0.001. Even though we will concentrate our

numerical analysis on calls the results for puts are similar.

Figure 2.4 plots the call delta of European-style options computed via the aforemen-

tioned binomial methods against the benchmark offered by Larguinho et al. (2013,

Equation A7), with β = 0, for the two graphs at the top, and β = 1, for the two graphs at

the bottom. The two left-hand side graphs show that, similarly to what was pointed out
2.7For completeness, we further note that the probability density functions of a noncentral chi-square distribution

law appearing in the analytical solutions of Greeks borrowed from Larguinho et al. (2013) are computed through
the ncx2pdf built-in function available in Matlab.
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by Pelsser and Vorst (1994) under the GBM assumption, the ExtTree method provides

a much better approximation to the true call delta under the CEV model than the NumD-

iff method, since the latter results in option deltas that are highly discrete in S0,0. The

two right-hand side graphs perform essentially the same calculations, but now com-

paring the three versions of the BCEV approach against the benchmark. Even though

we observe that the NumDiffBCEV method does not yield discrete values of delta, it

is still much less accurate than the ExtTreeBCEV and ExtTreeBCEVR methods. Thus,

while the inclusion of nonlinear and smoothly differentiable Schroder (1989) CEV func-

tions into the final pricing nodes of the tree before maturity removes the discreteness

problem associated with numerical differentiation, the extension of the original lattice

scheme to nodes with dates prior to time t0 = 0 seems to be a relevant feature un-

der the CEV model since it reduces significantly the ∆ estimation error of the ExtTree,

ExtTreeBCEV and ExtTreeBCEVR methods.

This implies that the conclusion pointed out by Chung and Shackleton (2002)—for

the same set of parameters but under the GBM framework—that the addition of a

smooth function in the BBS tree and numerical differentiation with h = 0.01 outperforms

either a standard extended tree or a BBS extended tree is not valid under the CEV

model. As expected, as we augment the number of n evenly-spaced time points all

the methods tend to converge to the true value. However, a straight extended tree or a

BCEV extended tree both offer advantages in terms of computational burden since the

NumDiff and NumDiffBCEV methods require the tree to be recalculated whereas the

ExtTree and ExtTreeBCEV methods do not.

Figure 2.4 highlights also that as we move further away from the limiting GBM process

(i.e. β = 2) both the NumDiff and NumDiffBCEV methods amplify the magnitude of

the overestimation errors when approximating option deltas under CEV models with

alternative β values. This suggests that the ExtTree, ExtTreeBCEV and ExtTreeBCEVR
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methods accommodate better the leverage and volatility smile effects—both of which

are commonly observed across options markets and are captured by the CEV model

specification—when approximating ∆ values.

Other numerical results not reported here, but available upon request, show that the

same line of reasoning occurs also for the CEV model with an inverse leverage effect

(i.e. with β > 2). More specifically, as we move further away to the right of β = 2

the NumDiff and NumDiffBCEV methods produce again a significant biases, but now

with increasing underestimation errors, while the ExtTree, ExtTreeBCEV and ExtTree-

BCEVR methods are still very accurate. Therefore, while the introduction of nonlinear

and smoothly differentiable Schroder (1989) CEV functions into the final pricing nodes

of the tree before maturity removes the wavy erratic behavior of the NumDiff method,

the NumDiffBCEV method still contains substantial approximation errors due to the

distribution and nonlinearity errors discussed in Figlewski and Gao (1999).

[Please insert Figure 2.4 about here.]

Figure 2.5 illustrates the call (and put) gamma of European-style options, for β = 1,

calculated through the mentioned binomial methods against the true value provided

by Larguinho et al. (2013, Equation A12). The left-hand side graph shows that the

ExtTree method leads to very good approximations of the CEV gamma.2.8 Even though

the NumDiffBCEV method is exhibited in the right-hand side graph it reveals also very

poor approximations for Γ. By contrast, the ExtTreeBCEV and ExtTreeBCEVR models

originate very good approximations for Γ calculations. Once again, the extension of the
2.8We note, however, that the NumDiff method gives approximations that do not make any sense: it provides

gamma values equal to zero everywhere except near the point where the underlying spot price is 100. At this point,
the gamma value is very large when compared with the benchmark gamma value. For this reason, the NumDiff
method is not plotted in Figure 2.5. This is in line with the observation made by Pelsser and Vorst (1994) when
calculating gamma values under the GBM assumption.
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tree to nodes with dates prior to time t0 = 0 seems to be a key feature for computing

accurate gammas under binomial CEV schemes.

[Please insert Figure 2.5 about here.]

Figure 2.6 plots the call theta of a European-style in-the-money option, i.e. with S0,0 =

105 as in Chung and Shackleton (2002, Figures 3 and 4), and for β = 1, using the

two extended tree methods against the benchmark offered by Larguinho et al. (2013,

Equation A16). Following the recommendation of Chung and Shackleton (2002), the

graphs plot the right- and left-hand derivatives and their average that can be calculated

from the extended tree as follows:

θ− =
V (S−2,−1)− V (S0,0)

2τ
, (2.11)

θ+ =
V (S0,0)− V (S2,1)

2τ
, (2.12)

while the central (or symmetric) difference θ = θ++θ−
2

is given by equation (2.10).

The left-hand side graph of Figure 2.6 shows the ExtTree method with backward (θ−),

forward (θ+), and central (θ) approximating schemes compared to the theoretical θ val-

ues. We conclude that the average of forward and backward differences performs best

when compared with the benchmark value, though some oscillatory behavior is ob-

served as the the number of time steps rise. By contrast, the right-hand side graph of

Figure 2.6 reveals that no oscillation is found as we increase the number of tree steps

under the ExtTreeBCEV method due to the insertion of a smooth function before ma-

turity. Moreover, the average of forward and backward methods is still the preferable

scheme for computing thetas since it provides closer values to the continuous-time

benchmark. The graph reveals also that the theta value obtained through the ExtTree-

BCEV method seems to converge to the benchmark value monotonically and smoothly.
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Therefore, the use of the extrapolation formula derived by Chung et al. (2011) is able

to enhance significantly the accuracy of the theta value, as highlighted by the ExtTree-

BCEVR method.

[Please insert Figure 2.6 about here.]

While a straight numerical differentiation scheme (i.e. the NumDiff method) is known to

perform poorly for approximating θ values (even under the GBM setup), the left-hand

side graph of Figure 2.7 shows that the use of the NumDiffBCEV method with cen-

tral differences improves significantly the θ estimates.2.9 A direct comparison between

methods is provided in the right-hand side graph of Figure 2.7. Even though the NumD-

iffBCEV method requires the calculation of a second tree, the obtained θ estimates are

significantly more accurate than the ExtTreeBCEV method for a limited number of time

steps, at least for the specific contract under analysis. This finding is consistent with

Chung and Shackleton (2002, Figure 5) who show that the central numerical differen-

tiation of the BBS tree also improves significantly the accuracy of θ under the GBM

assumption. However, the ExtTreeBCEVR method is preferable since it provides theta

values that are closer to the benchmark value.

[Please insert Figure 2.7 about here.]

Figures 2.4 to 2.7 plot Greek measures that do not represent a sufficiently large enough

sample to take more robust conclusions, thus giving only a preliminary flavor of the

results. Hence, to better assess the speed-accuracy trade-off between the competing

methods we follow the guidelines of Broadie and Detemple (1996) by conducting a
2.9For completeness, we recall that the forward and backward differences for the numerical differentiation

scheme are calculated as θ+ =
V (S0,0,T−τ)−V (S0,0,T )

τ and θ− =
V (S0,0,T )−V (S0,0,T+τ)

τ , respectively, while the
central difference θ = θ++θ−

2 results in equation (2.9).
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careful large sample evaluation of 2500 randomly generated contracts. To accomplish

this purpose, we fix the initial asset price at St0 = 100 and take the strike price K to

be uniform between 70 and 130. The β parameter is distributed uniformly between

−4 and 2. The volatility σ0 is distributed uniformly between 0.10 and 0.60, and the

scale parameter δ is then computed. Time to maturity is, with probability 0.75, uniform

between 0.1 and 1.0 years and, with probability 0.25, uniform between 1.0 and 5.0

years. The dividend yield q is uniform between 0.0 and 0.1. The riskless rate r is

uniform between 0.0 and 0.1.

The graph on the left-hand side of Figure 2.8 compares the speed-accuracy trade-

off between the alternative valuation methods—all binomial models in this graph are

based on the standard binomial scheme of Cox et al. (1979)—for computing deltas

under the GBM assumption using the whole set of 2500 contracts. The plot highlights

that the speed-accuracy trade-off between the ExtTree, NumDiffBBS and ExtTreeBBS

methods are almost indistinguishable. We also observe that the NumDiffBBS method

requires less evenly-spaced time points to achieve the same root mean square (hence-

forth, RMS) relative error obtained by the ExtTree and ExtTreeBBS methods. These

results confirm the argument stated by Chung and Shackleton (2002) that the inclusion

of nonlinear and smoothly differentiable Black-Scholes functions into the holding value

of the final pricing nodes before maturity improves significantly the straight NumDiff

method under the GBM framework. Nevertheless, the ExtTreeBBS method is a bino-

mial model with the smooth and monotonic convergence property and, therefore, we

may apply the two-point extrapolation formula derived by Chung et al. (2011). Con-

sequently, the ExtTreeBBSR method clearly offers the best speed-accuracy trade-off

among the methods tested here under the GBM setup.2.10

2.10See Chung et al. (2011) for thorough discussions on other recent binomial models under the GBM assumption
whose binomial option prices converge to the true value monotonically and smoothly.
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The graph on the right-hand side of Figure 2.8 also compares the speed-accuracy

trade-off between the alternative valuation methods for computing deltas, but now un-

der the CEV model. Following the insight outlined by Larguinho et al. (2013, Page

911), we excluded option parameter configurations where the abscissa value and the

noncentrality parameter of the noncentral chi-square distribution functions appearing in

the analytical solutions provided by Schroder (1989) are both ≥ 5000. Out of the 2500

randomly generated contracts, 2474 did not satisfied this criteria.2.11 The plot reveals

that both the NumDiff and NumDiffBCEV methods perform poorly. Hence, contrary

to what it is observed under the GBM case, the inclusion of nonlinear and smoothly

differentiable CEV option pricing analytical solutions into the penultimate pricing nodes

of the tree does not reduce significantly the errors of the standard NumDiff method,

though it removes the discreteness problem associated with the straight numerical dif-

ferentiation.

The conclusions to be taken from this large sample confirm that the extension of the

original lattice scheme to nodes prior to time t0 = 0 is an important feature to obtain

accurate delta values via binomial CEV models. We observe that the ExtTree and Ext-

TreeBCEV methods offer a similar accuracy for the same number of time steps though

the primer scheme is faster than the latter. This means that without extrapolation the

ExtTree provides a better speed-accuracy trade-off. However, we can apply the two-

point extrapolation formula to the ExtTreeBCEV method to significantly enhance the

accuracy of the delta estimation. For instance, the ExtTreeBCEVR method requires

less than 100 time steps to achieve the same RMS relative error as that of the ExtTree

and ExtTreeBCEV methods with 1000 time steps. Hence, the ExtTreeBCEVR method

is clearly the most efficient one.
2.11The remaining 26 randomly generated contracts are excluded from the sample to be used for performing

speed-accuracy tests under CEV because they are all associated to β parameters that are almost indistinguishable
from the limiting GBM value of β = 2 coupled with low volatility values.
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[Please insert Figure 2.8 about here.]

Figure 2.9 compares the speed-accuracy trade-off between the alternative valuation

methods for computing gammas—left-hand side graph—and thetas—right-hand side

graph—under the CEV model. As shown before, both the NumDiff and NumDiffBCEV

methods are inadequate for computing gamma sensitivity measures. Therefore, these

methods are not plotted here. Similarly to the delta case, the ExtTree method offers

a better speed-accuracy trade-off if we do not make use of the extrapolation scheme,

though both the ExtTree and ExtTreeBCEV methods provide an identical accuracy for

the same number of evenly-spaced time points. Nevertheless, the ExtTreeBCEVR

method provides a superior accuracy for computing gammas when n > 200.

Regarding the theta case, the graph reveals that without extrapolation the ExtTree

method is still the preferable one. However, the ExtTreeBCEV procedure requires sig-

nificantly fewer time-steps to achieve the same RMS relative error. Moreover, while

Figure 2.7 highlighted that the use of numerical differentiation can be reinstated for

computing theta values by simply including nonlinear and smoothly differentiable CEV

option pricing analytical solutions into the penultimate pricing nodes of the tree, the re-

sults in Figure 2.9 show that the NumDiffBCEV method is less efficient than the other

methods. Overall, we may conclude that the ExtTreeBCEVR is the best choice for

computing thetas under the CEV model.

[Please insert Figure 2.9 about here.]
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2.4 Conclusions

This article examines the choice of method for computing the option hedge ratios stud-

ied by Pelsser and Vorst (1994), Chung and Shackleton (2002), and Chung et al.

(2011), but assumes the underlying stock price is governed by a CEV diffusion pro-

cess. Contrary to what was found by Chung and Shackleton (2002) under the GBM

assumption, we show that, under the CEV model, an extended tree design is the key

feature for generating accurate and fast calculations of Greeks if one ignores the use of

a Richardson extrapolation technique. However, an extended tree binomial CEV model

with the smooth and monotonic convergence property is the most efficient method for

computing Greeks under the CEV diffusion process because one can apply the two-

point extrapolation formula suggested by Chung et al. (2011).
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Figure 2.4: Call delta of European-style options computed via alternative binomial methods
against the benchmark offered by Larguinho et al. (2013, Equation A7), with β = 0, for the two
graphs at the top, and β = 1, for the two graphs at the bottom.
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Figure 2.5: Call (and put) gamma of European-style options computed via alternative binomial
methods against the benchmark offered by Larguinho et al. (2013, Equation A12), with β = 1.
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Figure 2.6: Call theta of European-style options computed via extended tree schemes against
the benchmark offered by Larguinho et al. (2013, Equation A16), with β = 1.
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Figure 2.7: Call theta of European-style options computed via alternative binomial methods
against the benchmark offered by Larguinho et al. (2013, Equation A16), with β = 1.
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Figure 2.8: Speed-accuracy trade-off of alternative binomial methods for computing ∆ under
the GBM and CEV models using a random sample of 2500 and 2474 contracts, respectively.

The RMS relative error is defined by
√

1
m

∑m
i=1((∆̂i −∆i)/∆i)2, where ∆i is the true delta

value computed via the closed-form solutions of Black and Scholes (1973) and Larguinho et
al. (2013, Equation A7), respectively, ∆̂i is the approximate delta value estimated by the corre-
sponding binomial method, and m is the number of contracts. Speed is measured as the number
of delta values calculated per second (on a 2.50GHz i3-3120M Toshiba Satellite). Preferred
methods are in the upper-left corner.
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Figure 2.9: Speed-accuracy trade-off of alternative binomial methods for computing Γ and θ
under the CEV model using a random sample of 2474 contracts. The RMS relative error is

defined by
√

1
m

∑m
i=1((f̂i − fi)/fi)2, with f ∈ {Γ, θ} and where fi is the true Γ or θ value

computed via Larguinho et al. (2013, Equation A12 or A16), respectively, f̂i is the approximate
Γ or θ value estimated by the corresponding binomial method, and m is the number of contracts.
Speed is measured as the number of Γ or θ values calculated per second (on a 2.50GHz i3-
3120M Toshiba Satellite). Preferred methods are in the upper-left corner.
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3. Valuing American-Style Options under the CEV

Model: An Integral Representation Based Method∗

Abstract: This article derives a new integral representation of the early exercise bound-

ary for valuing American-style options under the constant elasticity of variance (CEV)

model. An important feature of this novel early exercise boundary characterization

is that it does not involve the usual (time) recursive procedure that is commonly em-

ployed in the so-called integral representation approach well known in the literature.

Our non-time recursive pricing method is shown to be analytically tractable under the

local volatility CEV process and the numerical experiments demonstrate its robustness

and accuracy.

JEL Classification: G13

Keywords: CEV model; Option pricing; American-style options; Early exercise bound-

ary; Iterative method.
∗This paper is a joint work with José Carlos Dias and is under review in a peer-reviewed journal.
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3.1 Introduction

The valuation and hedging of American-style options through analytical approximations

and numerical schemes continues to receive much attention in the finance community

given the impossibility of obtaining elegant closed-form solutions such as those offered

by Black and Scholes (1973) and Merton (1973) under the geometric Brownian motion

(hereafter, GBM) setup. The interest on these contracts is enhanced also by the fact

that they are actively traded throughout the world on several options exchanges involv-

ing substantial amounts of trading volume. The main assumption underlying the GBM

modeling framework is that asset prices follow a log-normal diffusion process with con-

stant volatility, which permits a considerable amount of mathematical tractability and

allows the valuation of European-style plain-vanilla options using simple analytical for-

mulae. However, there is an abundant empirical evidence showing that the volatility of

log-returns is far from being constant—especially after the stock market crash of Oc-

tober 1987, as documented, for example, in Jackwerth and Rubinstein (1996, 2012)—

and, hence, several attempts have been developed in the literature to overcome such

undesirable assumption.

In particular, Cox (1975), Cox and Ross (1976) and Emanuel and MacBeth (1982) pro-

pose the so-called constant elasticity of variance (hereafter, CEV) model, in which the

volatility is specified as a function of the option’s underlying asset price. Even though

this local stochastic volatility model has been established more than forty years ago, it

is still nowadays quite popular among researchers and practitioners because it offers

several appealing features, namely: (i) the state-dependent volatility assumption of the

CEV model allows volatility to be modeled using a simple and parsimonious specifica-

tion, without the need of introducing an additional stochastic process as in the case of

the Heston (1993) stochastic volatility model; (ii) it is known to be consistent with the
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existence of a negative correlation between stock returns and realized volatility (lever-

age effect) observed, for instance, in Black (1976), Beckers (1980), Christie (1982) and

Bekaert and Wu (2000);3.1 (iii) it is able to accommodate the inverse relation between

the implied volatility and the strike price of an option contract (implied volatility skew)

documented, for example, in Dennis and Mayhew (2002) and Bakshi et al. (2003).

The main aim of this paper is to propose a simple iterative method to determine the

optimal exercise boundary for valuing American-style options under the CEV diffusion

process following the insights offered by Little et al. (2000) and Kim et al. (2013) in the

context of the log-normal assumption. It is well known that the early exercise feature

attached to American-style contingent claims turns the option pricing problem much

more complex than its European-style counterpart, mainly because the early exercise

boundary is not known ex-ante (i.e., before the solution of the pricing problem) and,

therefore, it must be determined simultaneously as the solution of the same boundary

value problem. In other words, the valuation of such claims requires the identification

of the set of prices and times at which it is optimal to exercise the contract. To over-

come this challenging difficulty, several alternative valuation methodologies have been

proposed in the literature.3.2

One of the first attempts to price American-style options under the CEV model is due

to Kim and Yu (1996) and Detemple and Tian (2002), who extend the so-called in-

tegral representation method—initially established by Kim (1990), Jacka (1991), Carr

et al. (1992) and Jamshidian (1992) in a GBM context—to the valuation of American-

style options under alternative diffusion processes. More recently, Nunes (2009) pro-
3.1A common interpretation for this stylized fact is that when an asset price declines, the associated firm becomes

more leveraged since its debt to equity ratio becomes larger. Therefore, the risk of the asset, namely its volatility,
should become higher. Another possible economic rationale for this phenomenon is that the forecast of an increase
in the volatility should be compensated by a higher rate of return, which can only be obtained via a decrease in the
asset value.

3.2The valuation of American-style contingent claims has a long list of relevant contributions and an exhaustive
literature review would be prohibitive. However, a general overview of the most important developments on this
subject may be found, for example, in Myneni (1992), Broadie and Detemple (2004) and Barone-Adesi (2005).

32



poses an optimal stopping approach that is valid for any Markovian asset price process,

Chung and Shih (2009) and Ruas et al. (2013) develop an efficient static hedging port-

folio approach (hereafter, SHP), whereas Ballestra and Cecere (2015) derive elegant

semi-analytical approximations (though expressed in terms of confluent hypergeomet-

ric functions and modified Bessel functions), by extending the pricing methodology

previously proposed by Barone-Adesi and Whaley (1987) under the GBM assumption

to a CEV diffusion setup.

A common feature of the option pricing methodologies based on the integral represen-

tation approach is that they use a discretization scheme of a given number of implicit

integral equations defining the optimal exercise points of the early exercise boundary.

The numerical procedure is initiated at the maturity date with appropriate boundary

conditions and then the optimal stopping boundary is computed through a time recur-

sive iterative method using the whole set of integral equations (i.e., the boundary is

computed recursively via backward induction). Once such optimal exercise boundary

is obtained, calculations of the early exercise premiums and option prices are then per-

formed. Even though our method relies also on the integral representation approach, it

uses instead a non-time recursive iterative method similar to the one employed by Kim

et al. (2013) in a GBM modeling setup. Our numerical results show that the proposed

method is accurate and efficient under the CEV model, thus being a viable alternative

to the aforementioned option pricing methodologies under such local volatility model.

The rest of the paper proceeds as follows. Section 3.2 presents a short overview of the

integral representation method under the CEV model. Section 3.3 highlights the main

contribution of the paper: the extension of the early exercise premium representation

proposed by Kim et al. (2013) under the GBM setup to a state-dependent volatility CEV

process nesting, as a special case, the log-normal assumption. Section 3.4 tests the

robustness of the proposed non-time recursive iterative method under CEV. Section
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3.5 provides some concluding remarks and avenues for future research.

3.2 The American-style option pricing problem

This section provides a brief remainder of the CEV modeling setup and some back-

ground on the early exercise premium representation that has important implications

for the iterative method to be developed in Section 3.3.

3.2.1 The CEV model

Let us assume an arbitrage-free and frictionless financial market with continuous trad-

ing on the time interval [t0, T ], for some fixed time T > t0. As usual, uncertainty is rep-

resented by a complete probability space (Ω,F ,Q), where the equivalent martingale

probability measure Q associated to the numéraire money market account is taken as

given.

The valuation of the American-style options considered in this paper is explored in the

context of the CEV model initially developed by Cox (1975), Cox and Ross (1976) and

Emanuel and MacBeth (1982). Under this state-dependent volatility framework, the

asset price {St, t ≥ 0} is assumed to be governed (under the risk-neutral probability

measure Q) by the stochastic differential equation

dSt = (r − q)St dt+ δ S
β/2
t dWQ

t , (3.1)

for δ ∈ R+ and β ∈ R, and where r ≥ 0 denotes the instantaneous riskless interest rate,

q ≥ 0 represents the dividend yield for the underlying asset price, and WQ
t ∈ R is a

standard Brownian motion under Q, initialized at zero and generating the augmented,
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right continuous and complete filtration F = {Ft : t ≥ t0} representing the history of the

financial market.

As usual, the model parameter δ can be interpreted as the scale parameter fixing the

initial instantaneous volatility at the reference time t0 = 0, i.e. σ0 = σ(S0) = δ S
β/2−1
0 .

This calibration procedure is standard in option pricing problems under the CEV dif-

fusion process since it ensures that the differences found between CEV models with

different β values stem purely from the effect of the relationship between volatility and

price levels. Moreover, elasticity values of β < 2 (i.e., with a direct leverage effect)

are able to reproduce the so-called reverse skew or volatility smirk pattern that typ-

ically appears for individual stock options, stock index options and crude oil prices,

whereas values of β > 2 (i.e., with an inverse leverage effect) are normally expected

for some commodity spot prices and futures options with upward sloping implied volatil-

ity smiles (also known as forward skew patterns), as discussed, for instance, in Choi

and Longstaff (1985), Davydov and Linetsky (2001), Geman and Shih (2009), and Dias

and Nunes (2011).

3.2.2 The early exercise premium representation

Since an American-style option contract can be exercised at any time until (and includ-

ing) its expiry date, it is well established—see, for instance, Karatzas (1988, Theorem

5.4)—that the time-t0 price of a put (if ϕ = 1) or a call (if ϕ = −1) on the stock price

S, with strike price K, and maturity date T (≥ t0), can be represented by the following

Snell envelope:

Vt0 (S,K, T ;ϕ) := sup
τ∈T

EQ
[
e−r[(T∧τ)−t0] (ϕK − ϕST∧τ )

+
∣∣Ft0

]
, (3.2)
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where T is the set of all stopping times for the filtration F generated by the underlying

asset price process and taking values in [t0,∞[.3.3

Denoting the first passage time of the underlying asset price to its time-dependent

exercise boundary {Bt, t0 ≤ t ≤ T} by

τe := inf {t > t0 : St = Bt} (3.3)

and assuming that the American-style option is still alive at the valuation date t0 (i.e.,

ϕSt0 > ϕBt0), equation (3.2) can be restated as

Vt0 (S,K, T ;ϕ) (3.4)

= EQ
[
e−r[(T∧τe)−t0] (ϕK − ϕST∧τe)

+
∣∣Ft0

]
= EQ

[
e−r(τe−t0) (ϕK − ϕBτe) 11{τe<T}

∣∣Ft0

]
+ e−r(T−t0)EQ

[
(ϕK − ϕST )

+ 11{τe≥T}
∣∣Ft0

]
,

where the first line of equation (3.4) follows from the first passage time (3.3), and 11{A}

is the indicator function of the event {A}. We recall that ϕK ≥ ϕBτe , because the

early exercise boundary t 7→ Bt of the put (resp., call) is nondecreasing (resp., nonin-

creasing) on [t0, T ] and is limited from above (resp., below) by ϕ (ϕK ∧ ϕrK/q)—see,

for instance, Kim (1990, Pages 558 and 560), Jacka (1991, Proposition 2.2), Huang et

al. (1996, Footnote 5), Kim and Yu (1996, Pages 66 and 67), and Ruas et al. (2013,

Equation 33).

Similarly to Kim and Yu (1996), Detemple and Tian (2002) and Nunes (2009), it is

possible to express the American-style option price as the sum of two components: the

corresponding European-style option and an early exercise premium. To accomplish
3.3As usual, EQ [X| Ft] denotes the (time-t) expected value of the random variable X , conditional on Ft, and

computed under the equivalent martingale measure Q. Moreover, for any two real numbers x and y, we denote by
x ∨ y and x ∧ y, respectively, their maximum and minimum.
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this purpose, and since 11{τe≥T} = 1− 11{τe<T}, then equation (3.4) can be rewritten as

Vt0 (S,K, T ;ϕ)

= EQ
[
e−r(τe−t0) (ϕK − ϕBτe) 11{τe<T}

∣∣Ft0

]
+ e−r(T−t0)EQ

[
(ϕK − ϕST )

+
∣∣Ft0

]
−e−r(T−t0)EQ

[
(ϕK − ϕST )

+ 11{τe<T}
∣∣Ft0

]
,

= vt0 (S,K, T ;ϕ) + EEPt0 (S,K, T ;ϕ) , (3.5)

with

vt0(S,K, T ;ϕ) := e−r(T−t0)EQ
[
(ϕK − ϕST )

+
∣∣Ft0

]
= ϕKe−r(T−t0)FQ (T,K; t0, St0)− ϕSt0e

−q(T−t0)FQS (T,K; t0, St0)(3.6)

being understood as the European-style option component that can be efficiently com-

puted via the option pricing solutions offered by Schroder (1989), and

EEPt0 (S,K, T ;ϕ)

:= EQ
[
e−r(τe−t0) (ϕK − ϕBτe) 11{τe<T}

∣∣Ft0

]
− e−r(T−t0)EQ

[
(ϕK − ϕST )

+ 11{τe<T}
∣∣Ft0

]
=

∫ T

t0

[
ϕrKe−r(l−t0)FQ (l, Bl; t0, St0)− ϕqSt0e

−q(l−t0)FQS (l, Bl; t0, St0)
]
dl (3.7)

denoting the early exercise premium representation considered in Kim and Yu (1996)

and Detemple and Tian (2002),3.4 whereas the required probability distribution func-
3.4For the sake of completeness, we notice that Nunes (2009, Proposition 1) also decomposes the price of an

American-style option into the sum of the two aforementioned sources of value, as stated in equation (3.5). How-
ever, instead of using the integral representation (3.7), he proposes the use of an alternative characterization for
the early exercise premium that requires an efficient valuation formula for the European-style counterpart and the
knowledge of the underlying asset price transition density function.
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tions are defined as3.5

FQ (l, Bl;u, Su) :=



F
(
2x(Su);

2
2−β

, 2y(Bl)
)

⇐ β < 2, ϕ = −1

F
(
2y(Bl); 2 +

2
β−2

, 2x(Su)
)

⇐ β > 2, ϕ = −1

Q
(
2x(Su);

2
2−β

, 2y(Bl)
)

⇐ β < 2, ϕ = 1

Q
(
2y(Bl); 2 +

2
β−2

, 2x(Su)
)

⇐ β > 2, ϕ = 1

(3.8)

and

FQS (l, Bl;u, Su) :=



Q
(
2y(Bl); 2 +

2
2−β

, 2x(Su)
)

⇐ β < 2, ϕ = −1

Q
(
2x(Su);

2
β−2

, 2y(Bl)
)

⇐ β > 2, ϕ = −1

F
(
2y(Bl); 2 +

2
2−β

, 2x(Su)
)

⇐ β < 2, ϕ = 1

F
(
2x(Su);

2
β−2

, 2y(Bl)
)

⇐ β > 2, ϕ = 1

, (3.9)

with F (z; a, b) and Q (z; a, b) representing, respectively, the distribution function and the

complementary distribution function of a noncentral chi-square law with a degrees of

freedom and noncentrality parameter b and

k =
2(r − q)

δ2(2− β)[e(r−q)(2−β)(l−u) − 1]
, (3.10)

δ = σ (St0) S
1−β/2
t0 , (3.11)

x(S) = kS2−βe(r−q)(2−β)(l−u) (3.12)

and

y(B) = kB2−β. (3.13)

The valuation of the American-style option pricing solution (3.5) requires the knowl-

edge of the early exercise boundary {Bt, t0 ≤ t ≤ T}. To accomplish this purpose, it is

3.5As usual, the risk-neutral measure Q is associated to the money market account numéraire, while the equivalent
martingale measure QS takes as numéraire of the economy the underlying asset price.
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necessary to solve recursively the equation

ϕK − ϕBt (3.14)

= vt(Bt, K, T ;ϕ) +

∫ T

t

[
ϕrKe−r(l−t)FQ (l, Bl; t, Bt)− ϕqBte

−q(l−t)FQS (l, Bl; t, Bt)
]
dl,

by dividing the time to maturity of the option contract into n evenly-spaced time points

such that ∆t := (T − t0)/n, with each time ti := t0 + i∆t (for i = 0, 1, . . . , n). The

use of this discretization scheme yields, via equation (3.14), n implicit integral equa-

tions defining the optimal exercise points {Bt0 , Bt1 , . . . , Btn−1}. Initializing the numerical

procedure at the expiry date through the boundary condition Btn = ϕ (ϕK ∧ ϕrK/q),

then the early exercise boundary {Bti , 0 ≤ i ≤ n− 1} can be computed recursively (via

backward induction) using the n integral equations. For n sufficiently large, this inte-

gral representation approach produces a good approximation of the optimal stopping

boundary. Once such optimal exercise boundary is obtained, calculations of the early

exercise premiums and option prices are then straightforward.

3.3 The non-time recursive iterative method

In this section, we extend the early exercise premium representation derived by Kim et

al. (2013) under the log-normal model to a more general CEV diffusion process that

nests, as a special case, the GBM assumption.

It is well known that, at each time t ∈ [t0, T ], there exists a (unique) critical asset price Bt

below (resp., above) which the American-style put (resp., call) price equals its intrinsic

value and, therefore, early exercise should occur.3.6 If this is the case, then the optimal

policy should be to exercise the American-style option when the underlying asset price
3.6See, for example, Detemple and Tian (2002) and Dias and Nunes (2018) and the references therein.
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first enters the exercise (or stopping) region E := {(S, t) ∈ [0,∞[× [t0, T ] : ϕSt ≤ ϕBt}.3.7

In the exercise region E , the value of an American-style option is equal to its intrinsic

value, i.e. Vt (St, K, T ;ϕ) = ϕK − ϕSt and, hence, equations (3.5), (3.6) and (3.7) yield

ϕK − ϕSt (3.15)

= vt(St, K, T ;ϕ) +

∫ T

t

[
ϕrKe−r(l−t)FQ (l, Bl; t, St)− ϕqSte

−q(l−t)FQS (l, Bl; t, St)
]
dl.

The next step to obtain the representation of the exercise boundary requires a judicious

choice for St ∈ E . Similarly to Little et al. (2000) and Kim et al. (2013), we let St = ϵBt

with ϵ ∈ ]0, 1] for ϕ = 1 and ϵ ∈ [1,∞[ for ϕ = −1.3.8 With this substitution, equation

(3.15) becomes

ϕK − ϕϵBt (3.16)

= vt(ϵBt, K, T ;ϕ) +

∫ T

t

[
ϕrKe−r(l−t)FQ (l, Bl; t, ϵBt)− ϕqϵBte

−q(l−t)FQS (l, Bl; t, ϵBt)
]
dl.

Now it is necessary to differentiate both sides of equation (3.16) with respect to ϵ. The

derivative of the expression on left-hand side of the equation follows easily as

∂

∂ϵ
(ϕK − ϕϵBt) = −ϕBt. (3.17)

The differentiation of the expression on the right-hand side of equation (3.16) requires

the derivatives of the noncentral chi-square distribution laws (3.8) and (3.9) with respect
3.7C := {(S, t) ∈ [0,∞[× [t0, T ] : ϕSt > ϕBt} is defined as the corresponding continuation (or holding) re-

gion.
3.8Note that, for any T > t, equation (3.15) holds for every St below (resp., above) the boundary value Bt of the

put (resp., call). While applications under the CEV model using the usual integral representation approach—e.g.,
Kim and Yu (1996) and Detemple and Tian (2002)—look at the integral representation (3.15) only for St = Bt,
thus neglecting the region ϕSt < ϕBt and leading to the convolution type integral equation representation (3.14),
the early exercise representation exploited here—as well as in Little et al. (2000) and Kim et al. (2013)—considers
all the exercise region ϕSt ≤ ϕBt.
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to ϵ. Exploiting the ideas of Larguinho et al. (2013, Appendix A) and taking, for example,

the case with β < 2 and ϕ = 1 contained in the third branch of equation (3.9), then

∂

∂ϵ
FQS (l, Bl; t, ϵBt) =

∂

∂ϵ
F

(
2y(Bl); 2 +

2

2− β
, 2x(ϵBt)

)
=

∂

∂2x(ϵBt)
F

(
2y(Bl); 2 +

2

2− β
, 2x(ϵBt)

)
∂

∂ϵ
2x(ϵBt)

= −p

(
2y(Bl); 4 +

2

2− β
, 2x(ϵBt)

)
2− β

ϵ
2x(ϵBt), (3.18)

where the last line arises after straightforward calculus and because

∂

∂b
F (z; a, b) = − ∂

∂b
Q (z; a, b) = −p (z; a+ 2, b) , (3.19)

as noticed in Larguinho et al. (2013, Equation A2b), and with p (z; a, b) being the prob-

ability density function of a noncentral chi-square law with a degrees of freedom and

noncentrality parameter b.

Similarly, the case with β > 2 and ϕ = 1 contained in the fourth branch of equation (3.9)

can be computed as

∂

∂ϵ
FQS (l, Bl; t, ϵBt) =

∂

∂ϵ
F

(
2x(ϵBt);

2

β − 2
, 2y(Bl)

)
=

∂

∂2x(ϵBt)
F

(
2x(ϵBt);

2

β − 2
, 2y(Bl)

)
∂

∂ϵ
2x(ϵBt)

= p

(
2x(ϵBt);

2

β − 2
, 2y(Bl)

)
2− β

ϵ
2x(ϵBt), (3.20)

where the last line is obtained using simple calculations and because

∂

∂z
F (z; a, b) = − ∂

∂z
Q (z; a, b) = p (z; a, b) , (3.21)

as presented in Larguinho et al. (2013, Equation A2a).
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Following the same line of reasoning to calculate the remaining derivatives of the non-

central chi-square distributions (3.8) and (3.9) with respect to ϵ yields

F
{ϵ}
Q (l, Bl; t, ϵBt) :=

∂

∂ϵ
FQ (l, Bl; t, ϵBt) (3.22)

=

 −ϕp
(
2x(ϵBt);

2
2−β

, 2y(Bl)
)

2−β
ϵ
2x(ϵBt) ⇐ β < 2

ϕp
(
2y(Bl); 4 +

2
β−2

, 2x(ϵBt)
)

2−β
ϵ
2x(ϵBt) ⇐ β > 2

and

F
{ϵ}
QS (l, Bl; t, ϵBt) :=

∂

∂ϵ
FQS (l, Bl; t, ϵBt) (3.23)

=

 −ϕp
(
2y(Bl); 4 +

2
2−β

, 2x(ϵBt)
)

2−β
ϵ
2x(ϵBt) ⇐ β < 2

ϕp
(
2x(ϵBt);

2
β−2

, 2y(Bl)
)

2−β
ϵ
2x(ϵBt) ⇐ β > 2

.

Armed with equations (3.22) and (3.23), the differentiation of the expression on the

right-hand side of equation (3.16) follows straightforwardly. Using equation (3.6) with

the substitution S = ϵB, then the derivative of the European-style option component

with respect to ϵ is obtained as

∂

∂ϵ
vt(ϵBt, K, T ;ϕ) = ϕKe−r(T−t)F

{ϵ}
Q (T,K; t, ϵBt)− ϕBte

−q(T−t)FQS (T,K; t, ϵBt)

−ϕϵBte
−q(T−t)F

{ϵ}
QS (T,K; t, ϵBt) , (3.24)

while the derivative of the early exercise premium with respect to ϵ is given by

∂

∂ϵ

{∫ T

t

[
ϕrKe−r(l−t)FQ (l, Bl; t, ϵBt)− ϕqϵBte

−q(l−t)FQS (l, Bl; t, ϵBt)
]
dl

}
=

∫ T

t

[
ϕrKe−r(l−t)F

{ϵ}
Q (l, Bl; t, ϵBt)− ϕqBte

−q(l−t)FQS (l, Bl; t, ϵBt)

− ϕqϵBte
−q(l−t)F

{ϵ}
QS (l, Bl; t, ϵBt)

]
dl. (3.25)
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Combining equations (3.17), (3.24) and (3.25), the differentiation of both sides of equa-

tion (3.16) with respect to ϵ becomes

−ϕBt = ϕKe−r(T−t)F
{ϵ}
Q (T,K; t, ϵBt)− ϕBte

−q(T−t)FQS (T,K; t, ϵBt)

−ϕϵBte
−q(T−t)F

{ϵ}
QS (T,K; t, ϵBt)

+

∫ T

t

[
ϕrKe−r(l−t)F

{ϵ}
Q (l, Bl; t, ϵBt)− ϕqBte

−q(l−t)FQS (l, Bl; t, ϵBt)

− ϕqϵBte
−q(l−t)F

{ϵ}
QS (l, Bl; t, ϵBt)

]
dl. (3.26)

Taking the limit ϵ ↑ 1, if ϕ = 1, or ϵ ↓ 1, if ϕ = −1, and rearranging terms yields the

following implicit definition of the early exercise boundary {Bt, t0 ≤ t ≤ T}

Bt = ϕK

[
e−r(T−t)F

{ϵ}
Q (T,K; t, Bt) + r

∫ T

t

e−r(l−t)F
{ϵ}
Q (l, Bl; t, Bt) dl

]
×
[
− ϕ+ ϕe−q(T−t)

(
FQS (T,K; t, Bt) + F

{ϵ}
QS (T,K; t, Bt)

)
+ϕq

∫ T

t

e−q(l−t)
[
FQS (l, Bl; t, Bt) + F

{ϵ}
QS (l, Bl; t, Bt)

]
dl

]−1

. (3.27)

Even though the focus of our numerical experiments to be presented in the next section

is on the valuation of American-style options, the computation of the corresponding

hedge ratios, ∆t (.), follows straightforwardly once the optimal boundary is obtained.

To accomplish this purpose, it is only necessary to differentiate equation (3.5) with

respect to the underlying asset price S, that is

∆t (S,K, T ;ϕ) :=
∂

∂S
Vt (S,K, T ;ϕ)

=
∂

∂S
vt (S,K, T ;ϕ) +

∂

∂S
EEPt (S,K, T ;ϕ) , (3.28)

with the derivative of the European-style option component (3.6) with respect to S being
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obtained as3.9

∂

∂S
vt(S,K, T ;ϕ) = ϕKe−r(T−t)F

{S}
Q (T,K; t, St)− ϕe−q(T−t)FQS (T,K; t, St)

−ϕSte
−q(T−t)F

{S}
QS (T,K; t, St) , (3.29)

while the derivative of the early exercise premium (3.7) with respect to S is given by

∂

∂S

{∫ T

t

[
ϕrKe−r(l−t)FQ (l, Bl; t, S)− ϕqSe−q(l−t)FQS (l, Bl; t, S)

]
dl

}
=

∫ T

t

[
ϕrKe−r(l−t)F

{S}
Q (l, Bl; t, St)− ϕqe−q(l−t)FQS (l, Bl; t, St)

− ϕqSte
−q(l−t)F

{S}
QS (l, Bl; t, St)

]
dl, (3.30)

and the required derivatives of the noncentral chi-square distributions (3.8) and (3.9)

with respect to S are

F
{S}
Q (l, Bl; t, S) :=

∂

∂S
FQ (l, Bl; t, S) (3.31)

=

 −ϕp
(
2x(St);

2
2−β

, 2y(Bl)
)

2−β
S

2x(St) ⇐ β < 2

ϕp
(
2y(Bl); 4 +

2
β−2

, 2x(St)
)

2−β
S

2x(St) ⇐ β > 2

and

F
{S}
QS (l, Bl; t, S) :=

∂

∂S
FQS (l, Bl; t, S) (3.32)

=

 −ϕp
(
2y(Bl); 4 +

2
2−β

, 2x(St)
)

2−β
S

2x(St) ⇐ β < 2

ϕp
(
2x(St);

2
β−2

, 2y(Bl)
)

2−β
S

2x(St) ⇐ β > 2
.

The implementation of our non-time recursive iterative method is similar to the one

employed by Kim et al. (2013) in a GBM modelling setup. More specifically, it takes the
3.9Note that equation (3.29) is simply a compact formula of Larguinho et al. (2013, Equations A7-A10).
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right-hand side of equation (3.27) as a functional form for calculating the early exercise

boundary and begins the iteration scheme with the function

B0
t = ϕ (ϕK ∧ ϕrK/q) , (3.33)

which can be used on the right-hand side of equation (3.27) to obtain the left-hand

side as the first-round approximation denoted by B1
t . This first-round approximation is

then substituted on the right-hand side of equation (3.27) to obtain the second-round

approximation B2
t . This procedure is repeated until convergence is obtained. In each

round k, the early exercise boundary at maturity, i.e. Bk
T , is set to be equal to the

right-hand side of equation (3.33).

The proposed iterative method requires the use of a numerical integration scheme. In

all numerical computations presented in this paper, we use the global adaptive quadra-

ture built-in function “integral” that is available in Matlab R2017a, though any other

numerical integration scheme might be used.3.10 Following the insights of Kim et al.

(2013), we also use a polynomial interpolation method to accelerate the computation

of the optimal exercise boundary. More specifically, we approximate Bt through a poly-

nomial of degree n that interpolates all points in the set of {Bk
ti
}0≤i≤n at each kth-round

iteration.

In summary, the implementation of the iterative method is based on the following steps:

0. Set n+1 to be the number of nodes for time to maturity—i.e., the time to expiration

of the option contract is divided into n evenly-spaced time points with ∆t := (T −

t0)/n such that 0 = t0 < t1 < t2 < . . . < tn = T—and k the number of iterations.

3.10For completeness, we note also that the required noncentral chi-square distribution functions are computed
through Benton and Krishnamoorthy (2003, Algorithm 7.3), which has been also used in many recent articles
involving the CEV model, e.g. in Ruas et al. (2013), Dias et al. (2015), Nunes et al. (2015), and Cruz and Dias
(2017).
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1. The iteration is initialized at k = 0 with B0
t = ϕ (ϕK ∧ ϕrK/q). For each round k ∈

{0, 1, 2, . . .} the early exercise boundary at maturity is set to be Bk
T = ϕ (ϕK ∧ ϕrK/q).

2. Calculate Bk
t (for k = 1, 2, . . .).

(a) Calculate the value {Bk
ti
}0≤i≤n of the approximate optimal exercise bound-

ary by substituting Bt in the right-hand side of equation (3.27) with Bk−1
t .

We use the mentioned global adaptive quadrature method to calculate the

integrations in equation (3.27).

(b) Construct the function Bk
t by interpolating the values {Bk

ti
}0≤i≤n with a poly-

nomial of order n.

(c) Repeat steps (2a) and (2b) until required accuracy is obtained.

3. Calculate the value of the American-style option (3.5) and/or the hedge ratio

(3.28). The early exercise premium (3.7) and/or its derivative (3.30) are computed

using the aforementioned global adaptive quadrature method.

3.4 Numerical results

The aim of this section is to test the robustness of the proposed non-time recursive

iterative method by comparing our results with the ones reported in Nunes (2009) and

Ruas et al. (2013).3.11 Table 1 values standard American-style put options under the

CEV model, adopting the parameters constellation of Nunes (2009, Table 2) and Ruas

et al. (2013, Table 1). The third column presents the corresponding European-style

put option prices, while the fourth column shows the exact American-style put option
3.11As expected, most of the computational burden of the proposed iterative method is due to the required numeri-

cal integrations. Even though other numerical integration schemes might be applied to diminish the computational
effort, such efficiency considerations are outside the main scope of the present paper and, hence, speed-accuracy
trade-off analysis are not exploited here.
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values computed through the trinomial lattice scheme of Boyle and Tian (1999) with

10,000 time steps. Columns 5-9 (resp., 10-14) report the American-style put prices

calculated through the proposed iterative method using six (resp., ten) iterations and

five different polynomial interpolation schemes of order n ∈ {8, 16, 20, 24, 32}. The

accuracy of the method is measured by the mean absolute percentage error (hereafter,

MAPE) considering the whole set of 20 option contracts and with respect to the exact

American-style put option price. Table 2 reports similar numerical experiments but now

for the case of standard American-style call options under the CEV model and adopting

the parameters configuration of Nunes (2009, Table 3) and Ruas et al. (2013, Table 2).

[Please insert Table 1 about here.]

[Please insert Table 2 about here.]

The results of both tables indicate that the proposed method is accurate under the

local volatility CEV model: the MAPE in all tested cases is well below the typical bid-

ask spread observed in the market. Similar results—not reported here but available

upon request—are also obtained for the MAPE of the hedge ratios. As expected, for

a given number of k iterations the convergence of the method is improved when the

order n of the interpolation scheme increases. Moreover, the values reported in Ruas

et al. (2013, Table 1) for American-style puts allow us to conclude that the iterative

method with n = 16 (resp., n = 24) provides similar results in terms of accuracy to the

optimal stopping approach of Nunes (2009) with a five degree polynomial specification

for the early exercise boundary (resp., to the SHP scheme of Chung and Shih (2009)

and Ruas et al. (2013) with n = 24).3.12 Similar conclusions can also be taken for the

case of American-style calls.
3.12We have also tested the benchmark considered in Nunes (2009, Table 2) and Ruas et al. (2013, Table 1)—i.e.,

the Crank-Nicolson finite difference scheme with 15,000 time intervals and 10,000 space steps—and, as expected,
the corresponding MAPE values are similar to the ones reported in Tables 1 and 2.
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Another salient feature of Tables 1 and 2 is that augmenting the number of iterations

k from 6 to 10 does not improve the accuracy significantly. To clarify this point, Figure

1 plots the early exercise boundary of an American-style put option under the CEV

model using the parameters configuration borrowed from Chung and Shih (2009, Fig-

ure 4). The left-hand side plot shows the boundaries obtained by the proposed iterative

method for different numbers of iterations k ∈ {0, 1, 2, 3, 4, 5, 6} and n = 252. In this

case, it seems that four, five or six round-iterations are enough to obtain a suitably ac-

curate optimal exercise boundary. This is also true for others parameters combinations.

The right-hand side plot presents the early exercise boundary calculated through the

iterative method with k = 6 and n = 252 and the corresponding boundary computed by

the trinomial grid of Boyle and Tian (1999) with 10,000 time steps.

[Please insert Figure 1 about here.]

To sum up, Figure 1 indicates that our non-time recursive iterative method is able to

produce accurate values of the optimal boundary under the CEV model. It is also clear

from Figure 1 that the early exercise boundary exhibits the expected pattern in the case

of an American-style put: it is an increasing function of calendar time and the critical

exercise price near the maturity date of the option rises very rapidly with an increasing

slope, which is consistent with the asymptotic behavior of the early exercise boundary

near expiration highlighted in Chevalier (2005, Theorem 3.1), Chung and Shih (2009,

Equation 28) and Ruas et al. (2013, Equation 70).

3.5 Conclusions

This paper provides a simple non-time recursive iterative method to obtain the early

exercise boundary of American-style options under the CEV model, which allows us
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to compute accurate option prices and hedge ratios under such local volatility diffusion

process. The new early exercise premium representation nests, as a special case, the

integral representation derived by Kim et al. (2013) in the context of the log-normal

diffusion.

Although the non-time recursive iterative method is accurate and efficient for valuing

and hedging options under both the GBM and CEV diffusions, it also has the potential

to be applicable for more general processes beyond these two models. For example,

it would be interesting to study the possibility of using both the time and non-time

recursive iterative methods in the context of the jump to default extended CEV model

of Carr and Linetsky (2006) and compare the results with the ones reported in Nunes

(2009) and Ruas et al. (2013). To the best of our knowledge, however, such extension

has not been performed yet even under the standard integral representation approach

(i.e., under the time recursive iterative method) and, therefore, it is outside the scope

of the present article and it is suggested as a possible avenue for future research.
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Figure 1: The early exercise boundary of an American-style put option under the CEV model
with parameters configuration of Chung and Shih (2009, Figure 4): K = 100, T = 1, β = 4/3,
δ = 2, r = 10% and q = 5%. The left-hand side plot shows the boundaries obtained by
the proposed iterative method for different numbers of iterations k ∈ {0, 1, 2, 3, 4, 5, 6} and
n = 252. The right-hand side plot presents the early exercise boundary calculated through the
iterative method with k = 6 and n = 252 and the corresponding boundary computed by the
trinomial lattice scheme of Boyle and Tian (1999) with 10,000 time steps.
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4. A Note on Options and Bubbles under the CEV

Model: Implications for Pricing and Hedging∗

Abstract: The discounted price process under the constant elasticity of variance

(CEV) model is not a martingale for options markets with upward sloping implied volatil-

ity smiles. The loss of the martingale property implies the existence of (at least) two

option prices for the call option, that is the price for which the put-call parity holds and

the price representing the lowest cost of replicating the payoff of the call. This article

derives closed-form solutions for the Greeks of the risk-neutral call option pricing solu-

tion that are valid for any CEV process exhibiting forward skew volatility smile patterns.

Using an extensive numerical analysis, we conclude that the differences between the

call prices and Greeks of both solutions are substantial, which might yield significant

errors of analysis for pricing and hedging purposes.

JEL Classification: G13

Keywords: Bubbles; CEV model; Greeks; Option pricing; Put-call parity; Local martin-

gales.
∗This paper is a joint work with José Carlos Dias, and will be submitted to a peer-reviewed journal.
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4.1 Introduction

A bubble is characterized by the existence of an underlying asset whose discounted

price process is a strict local martingale under the risk-neutral probability measure but

not a martingale. The presence of bubbles in spot and option prices imply that many

standard results from option pricing theory do not hold. Hence, it is with no surprise that

this issue has attracted much attention in the literature—see, for example, Loewenstein

and Willard (2000), Cox and Hobson (2005), Heston et al. (2007), Ekström and Tysk

(2009), Pal and Protter (2010), Guasoni and Rásonyi (2015) and Veestraeten (2017),

just to name a few.

In particular, Cox and Hobson (2005), Heston et al. (2007) and Pal and Protter (2010)

show that unusual properties in option values arise in the presence of bubbles. For

instance, put-call parity fails—consequently, one can choose either put-call parity or

risk-neutral option pricing but not both (i.e., these properties are mutually exclusive)—,

the price of an American-style call on a non-dividend paying stock exceeds the price of

a similar European-style option, American-style call options have no optimal exercise

policy, the price of a European-style call is not convex as a function of the stock price,

call prices do not tend to zero as strike increases to infinity and lookback call options

have infinite value.

We recall that the equivalence of no-arbitrage with the existence of an equivalent prob-

ability martingale measure (and not simply a strict local probability martingale mea-

sure) is at the basis of the option pricing theory. For example, the option pricing

methodology developed by Black and Scholes (1973) and Merton (1973) (henceforth,

BSM) relies on delta-hedging arguments to value option contracts based on the as-

sumption of no-arbitrage strategies that profit instantaneously and it establishes that
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option values must satisfy a particular partial differential equation (hereafter, PDE).

The existence of a unique PDE solution for a given option pricing problem highlights

the absence of arbitrage opportunities. As argued by Heston et al. (2007), however,

multiple PDE solutions entail different strategies that exactly replicate identical option

payoffs at different costs. This implies that two distinct replication strategies will pro-

duce different returns at the option’s expiry date. The asset with dominated returns has

an asset pricing bubble because its payoffs can be replicated by a cheaper investment

strategy. Although the stock price process of the BSM model is a martingale under the

risk-neutral probability measure, there are some important models in the option pricing

literature for which the price process is a local martingale under the pricing measure,

but not a true martingale.

In the present article, we will focus our analysis on the so-called constant elasticity

of variance (hereafter, CEV) model of Cox (1975), Cox and Ross (1976) and Emanuel

and MacBeth (1982) to provide further insight on option pricing in markets with bubbles.

This local stochastic volatility model is quite popular among researchers and practi-

tioners because it offers several appealing features, namely: (i) the state-dependent

volatility assumption of the CEV model allows volatility to be modeled using a simple

and parsimonious specification, without the need of introducing an additional stochastic

process as in the case of the Heston (1993) stochastic volatility model; (ii) it is known

to be consistent with the existence of a negative correlation between stock returns

and realized volatility (leverage effect) observed, for instance, in Black (1976), Beckers

(1980), Christie (1982) and Bekaert and Wu (2000); (iii) it is able to accommodate the

inverse relation between the implied volatility and the strike price of an option contract

(implied volatility skew) documented, for example, in Dennis and Mayhew (2002) and

Bakshi et al. (2003).

Even though the martingale property under the CEV model is preserved in the case of
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options markets exhibiting volatility smirk patterns (i.e., with downward sloping implied

volatility smiles), the discounted price process under the CEV model is not a martin-

gale for options markets exhibiting forward skew patterns (i.e., with upward sloping

implied volatility smiles), as was first documented in Emanuel and MacBeth (1982),

Lewis (2000) and Delbaen and Shirakawa (2002). Cox and Hobson (2005) and Hes-

ton et al. (2007) offered an economic interpretation for this technical irregularity of the

CEV model as evidence for the presence of a stock price bubble. Heston et al. (2007)

further show that this loss of the martingale property implies the existence of (at least)

two option prices for the call option: the price for which the put-call parity holds and the

price representing the lowest cost of replicating the payoff of the call.

Since the CEV process is widely used in many option pricing applications, the main aim

of this article is to shed further light on the implications for option pricing and hedging

purposes of the existence of multiple option prices under such state-dependent volatil-

ity setup. To accomplish this purpose, we offer novel closed-form solutions of Greeks

for the risk-neutral call option pricing formula proposed by Heston et al. (2007) and for

any elasticity parameter of a CEV process. This is achieved by combining the new

sensitivity measures derived in this paper for the bubble formula—which can be sim-

ply expressed as the difference between the solution given by Emanuel and MacBeth

(1982) and the cheapest solution of Heston et al. (2007)—and the analytical formulae

of Greeks provided by Larguinho et al. (2013) for the CEV model and expressed in

terms of the noncentral chi-square distribution function. Hence, our formulas can be

applied to any CEV process possessing upward sloping implied volatility smiles, thus

making the formulas recently presented in Veestraeten (2017) a special case of our

general analytical solutions. This should be important for both academics and practi-

tioners since such implied volatility behaviour is a characteristic that is often observed

in some commodity spot prices, energy markets and futures options—see, for exam-
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ple, Choi and Longstaff (1985), Adland et al. (2008), Geman and Shih (2009), Dias and

Nunes (2011) and Lindström and Regland (2012).

The remainder of the article is organized as follows. Section 4.2 provides a short

overview of the CEV model and its boundary conditions and the call options pricing

solutions of Emanuel and MacBeth (1982) and Heston et al. (2007). Section 4.3 de-

rives closed-form solutions of Greeks for the risk-neutral call option pricing formula of

Heston et al. (2007). Section 4.4 provides computational experiments with the aim of

discussing the sensitivities of the option prices to their input parameters in the presence

of bubbles. Section 4.5 gives some concluding remarks.

4.2 The CEV option pricing model

4.2.1 Model setup

The CEV process of Cox (1975) assumes that the asset price {St, t ≥ 0} is governed

(under the risk-neutral probability measure Q) by the stochastic differential equation

dSt

St

= (r − q) dt+ σ(St) dW
Q
t , (4.1)

with a local volatility function given by

σ(St) = δ S
β
2
−1

t , (4.2)

for δ ∈ R+, β ∈ R, and where r ≥ 0 denotes the instantaneous riskless interest rate,

q ≥ 0 represents the dividend yield for the underlying asset price, σ(St) corresponds

to the instantaneous volatility per unit of time of asset returns, and WQ
t ∈ R is a stan-
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dard Brownian motion under Q, initialized at zero and generating the augmented, right

continuous and complete filtration F = {Ft : t ≥ t0}.

We recall that the elasticity of return variance with respect to price is equal to β − 2

given that dv(St)/v(St) = (β − 2) dSt/St, where v(St) = δ2 Sβ−2
t is the instantaneous

variance of asset returns. Moreover, the stochastic differential equation (4.1) nests the

lognormal assumption of Black and Scholes (1973) and Merton (1973) (if β = 2), as

well as the absolute diffusion (when β = 0) and the square-root diffusion (for β = 1)

models of Cox and Ross (1976), as special cases. Whenever β < 2 (resp., β > 2)

the local volatility function (4.2) is a decreasing (resp., increasing) function of the asset

price, thus being able to generate downward-sloping (resp., upward-sloping) volatility

skews. The model parameter δ is a positive constant that can be interpreted as the

scale parameter fixing the initial instantaneous volatility at the reference time t = 0,

i.e. σ0 = σ(S0) = δ S
β/2−1
0 . This calibration procedure ensures that the differences

found between CEV models with different β values stem purely from the effect of the

relationship between volatility and price levels, which is captured by the CEV volatility

specification (4.2).

4.2.2 Boundary characterization of the CEV diffusion

From Andersen and Andreasen (2000, Lemma 2) and Davydov and Linetsky (2001,

Page 955), we recall that the CEV diffusion has the following boundary characteriza-

tion:4.1 infinity is a natural boundary for β < 2; zero is an exit boundary for 1 ≤ β < 2;

and, for β < 1, zero is a regular boundary point and is specified as a killing boundary

by adjoining a killing boundary condition. In technical terms, the imposition of such

condition for the boundary behavior at S = 0 ensures that the stochastic differential
4.1For β = 2 (the lognormal case), both zero and infinity are natural boundaries.

58



equation (4.1) has a unique solution and satisfies the local Lipschitz continuity condi-

tion enunciated in Andersen and Andreasen (2000, Theorem 1). Consequently, the

origin becomes the absorbing state for the stock price process {St, t ≥ 0} whenever

β < 2. Therefore, τ0 := inf {t > t0 : St = 0} < ∞ for these cases. This implies that the

CEV process with β < 2 hits zero with positive probability, though such killing probabil-

ity is generally quite small.

For β > 2, however, zero is a natural boundary and τ0 = ∞ (i.e. the probability that the

stock price hits the point 0 is zero). Moreover, and still for β > 2, the CEV local volatility

(4.2) is unbounded as S → ∞, and thus +∞ is an entrance boundary for the CEV

diffusion. Furthermore, and as initially observed by Emanuel and MacBeth (1982), the

mean of the CEV density function for the case β > 2 is less than Ste
(r−q)τ for all S > 0

and τ > 0. However, one would expect a mean of Ste
(r−q)τ given the (risk-neutral)

dynamics (4.1).

Notwithstanding Emanuel and MacBeth (1982) were the first to observe the afore-

mentioned paradox for the case β > 2—and offered a call option pricing solution that

avoids such problem by integrating the corresponding density function over domains

that do not include +∞—, they did not mention the possible existence of arbitrage

opportunities under the CEV model. By exploring the powerful linkage between the

CEV diffusion and squared Bessel processes, Delbaen and Shirakawa (2002) show

the existence of a unique equivalent martingale measure and derive the Cox (1975)

arbitrage free call option pricing formula (for β < 2) through the properties of squared

Bessel processes. However, Delbaen and Shirakawa (2002, Theorem 4.2) highlight

that the CEV model admits arbitrage opportunities when it is conditioned to be strictly

positive, as it happens whenever β > 2.

We note that such problem is caused by the explosive nature of the stochastic pro-

cess when β > 2, which implies that the stock price process under CEV has a bubble,
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as shown in Heston et al. (2007, Example 2.3). Technically speaking, the CEV pro-

cess with β > 2 does not satisfy the so-called linear growth condition enunciated by

Andersen and Andreasen (2000, Theorem 1). Clearly, this is not a desirable feature

for financial applications since there is no equivalent martingale measure for the CEV

specification when β > 2. As shown in Andersen and Andreasen (2000, Section 4.2),

Davydov and Linetsky (2001, Footnote 8 and Appendix B), and Windcliff et al. (2001,

Page 224), however, this problem can be easily circumvented (from a practical point of

view) through a regularizing scheme for large values of S, which modifies the volatility

specification (4.2) to a regularized version of the CEV model—known as limited CEV

(henceforth, LCEV) process—whose volatility is bounded as

σε(St) = δ min

{
S

β
2
−1

t , ε
β
2
−1

}
, (4.3)

where ε is a fixed large number for which the LCEV process becomes a geometric

Brownian motion diffusion when the asset price crosses over such switching level.4.2

Consequently, +∞ is a natural boundary, the mean of ST is equal to Ste
(r−q)τ , and the

process {Ste
(q−r)τ ; t ≥ 0} is a martingale on any finite time interval.

In summary, such modification of the CEV process exhibits more appealing growth and

boundary characteristics. Even though the technical irregularities of the CEV process

can be surpassed through a regularized version of the CEV model, it is still interesting

to understand the effective impact (for practical applications) of the existence of bubbles

under CEV when pricing and hedging options with upward sloping implied volatility

smiles, i.e. CEV models with β > 2. For completeness, the next three subsections

summarize the call option pricing solutions offered by Emanuel and MacBeth (1982)

and Heston et al. (2007) and the implications of multiple solutions for the put-call parity
4.2A similar regularization scheme can be applied at small price levels for the CEV process with β < 2 to avoid

absorption at zero.
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property.

4.2.3 The Emanuel and MacBeth (1982) call option pricing solution

The CEV option pricing solutions for standard European-style contracts have been

initially expressed in terms of the standard complementary gamma distribution function

by Cox (1975) for β < 2 and by Emanuel and MacBeth (1982) for β > 2, whereas

Schroder (1989) has subsequently extended such formulae in terms of the noncentral

chi-square distribution.

Focusing on the case with β > 2 and following Schroder (1989, Footnote 2), the time-t

value of a European-style call option on the asset price S, with strike K, and maturity

at time T (≥ t) is given by

c1t (St, K, T ) = St e
−qτ Q (2x; 2v, 2y)−K e−rτ [1−Q (2y; 2 + 2v, 2x)] , (4.4)

with Q(.; v, λ) being the complementary distribution function of a noncentral chi-square

law with v ≥ 0 degrees of freedom and noncentrality parameter λ ≥ 0, and where

k :=
2(r − q)

δ2(2− β)[e(r−q)(2−β)τ − 1]
, (4.5)

x := k S2−β
t e(r−q)(2−β)τ , (4.6)

y := kK2−β, (4.7)

v :=
1

β − 2
, (4.8)

and

τ := T − t. (4.9)
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4.2.4 The Heston et al. (2007) call option pricing solution

The call option formula (4.4) is often (incorrectly) assumed to be the risk-neutral ex-

pected discounted value of the payoff of a European-style call option. Heston et al.

(2007) show that this is not the case and offer the novel (corrected) solution expressed

as4.3

c2t (St, K, T ) = St e
−qτ

[
Q (2x; 2v, 2y)− Γ(v, x)

Γ(v)

]
−K e−rτ [1−Q (2y; 2 + 2v, 2x)] , (4.10)

with Γ (a, z) and Γ (a) representing the upper incomplete gamma function and the Euler

gamma function given in Abramowitz and Stegun (1972, Equations 6.5.3 and 6.1.1),

respectively, for a, z ∈ R+.

The option pricing formula (4.10) is the risk-neutral expected discounted payoff of the

call and is also the cheapest nonnegative solution subject to the same boundary con-

ditions as the solution (4.4). One notes that the solutions’ difference is

c1t (St, K, T )− c2t (St, K, T ) = Πt(St, K, T ), (4.11)

where the bubble value is simply given by

Πt(St, K, T ) = St e
−qτ Γ(v, x)

Γ(v)
. (4.12)

The minimum quantity needed to replicate the option payoff at maturity is given by the

risk-neutral solution (4.10). This implies that there is an arbitrage opportunity (even

though an equivalent local martingale measure exists) and there are bubbles on option
4.3We note that equation (4.10) corrects the misprint error of Heston et al. (2007, Page 367) highlighted in

Veestraeten (2017, Footnote 1).
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values and on the stock price.

4.2.5 The put-call parity property

Although solution (4.4) does not satisfy risk-neutral pricing, put-call parity will hold for

c1t (.) if the put is risk-neutral priced, that is

c1t (St, K, T ) = pt(St, K, T ) + St e
−qτ −K e−rτ , (4.13)

with

pt(St, K, T ) = K e−rτ Q (2y; 2 + 2v, 2x)− St e
−qτ [1−Q (2x; 2v, 2y)] (4.14)

being the risk-neutral put price shown, for instance, in Larguinho et al. (2013) and Hull

(2018, Chapter 27). However, since c2t (.) < c1t (.) the risk-neutral pricing solution (4.10)

does not satisfy the put-call parity property, that is put-call parity cannot hold if the put

and call are both risk-neutral priced. In summary, as argued by Heston et al. (2007)

one must choose between risk-neutral pricing and put-call parity since choosing both

is not possible.

4.3 Sensitivity measures of the bubble formula

To better understand the importance and magnitude of the bubble values for pricing

and hedging European-style plain-vanilla options under the CEV model, next proposi-

tion expresses the Greeks of the bubble formula (4.12) analytically and for any β > 2.

Hence, we are able to offer novel closed-form solutions for the Greeks of the risk-

neutral call option formula (4.10) using the results borrowed from Larguinho et al.

63



(2013).

Proposition 4.1 Let k, x, v, and τ be defined as in equations (4.5), (4.6), (4.8), and

(4.9), respectively, and take St > 0.

i. The delta of the bubble formula (4.12) is given by

∆Π =
∂Πt (.)

∂S
= e−qτ Γ(v, x)

Γ(v)
+ e−qτ−x xv

Γ(v + 1)
. (4.15)

ii. The gamma of the bubble formula (4.12) is given by

ΓΠ =
∂Π2

t (.)

∂S2
=

∂∆Π

∂S
= e−qτ−x xv+1

vSt Γ(v + 1)
. (4.16)

iii. The theta of the bubble formula (4.12) is given by

ΘΠ = −∂Πt (.)

∂τ
= q St e

−qτ Γ(v, x)

Γ(v)
+ St e

−qτ−x xv

Γ(v + 1)

r − q

e(r−q)(2−β)τ − 1
. (4.17)

iv. The vega of the bubble formula (4.12) is given by

VΠ =
∂Πt (.)

∂σ
= 2S

2−β/2
t e−qτ−x xv

δ Γ(v)

= 2St e
−qτ−x xv

σ Γ(v)
. (4.18)

v. The rho of the bubble formula (4.12) is given by

ρΠ =
∂Πt (.)

∂r
= −St e

−qτ−x xv

Γ(v)

[
1

r − q
− (2− β)τ

e(r−q)(2−β)τ − 1

]
. (4.19)

Proof. The proof follows from straightforward calculations using the result in Abramowitz

and Stegun (1972, Equation 6.5.25) and is available upon request.�
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Corollary 1 The Greeks of the risk-neutral call option pricing solution (4.10) arise im-

mediately after subtracting the bubble Greeks shown in Proposition 4.1 from the corre-

sponding sensitivity measures offered by Larguinho et al. (2013) for the pricing formula

(4.4).

As discussed in Schroder (1989, Section V), the complementary noncentral chi-square

distribution function with odd degrees of freedom can be represented by the sum of

normal distributions and elementary functions. Relying on this idea, Veestraeten (2017)

offer analytical solutions only for the case with β = 4—i.e., for α = β/2 = 2 in their

formulation, which implies the special cases with degrees of freedom of 1 and 3—with

the argument that Greeks expressed in terms of the noncentral chi-square distributions

would “become too elaborate for a meaningful analysis”. The sensitivity measures of

the bubble formula (4.12) offered in Proposition 4.1 and Corollary 1 clearly show that

this is not the case since all the required functions—namely, the upper incomplete

gamma function, Euler gamma function and the probability density function and the

complementary distribution function of a noncentral chi-square law—can be easily and

efficiently computed and are available as built-in functions in any computer language.4.4

In summary, the proposed novel Greeks are valid for any CEV model with β > 2 and

nest the sensitivity measures presented in Veestraeten (2017) as a special case of

our general solutions. Moreover, the use of our unrestricted Greeks is better able to

provide a more detailed analysis of the presence of bubbles under the CEV model and

its impact for hedging purposes.

Remark 4.1 Similarly to Larguinho et al. (2013, Equation A15), the bubble vega shown

in equation (4.18) is derived with respect to the initial volatility σ ≡ σ0. By contrast,
4.4For instance, the unrestricted Greeks solutions of Larguinho et al. (2013) have been proved to be crucial in a

wide variety of option pricing applications under the CEV model—see, for example, Ruas et al. (2013), Dias et al.
(2015), Nunes et al. (2015) and Cruz and Dias (2017).
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Veestraeten (2017, Section 4.3) derives vegas with respect to the scale parameter δ

(denoted by σ in his notation). By multiplying the formulas of his vegas by S1−α—

representing ∂δ/∂σ0, with δ = σ0S
1−α—, then the vega values for α = 2 are equal to

the ones obtained through our solutions with β = 4.

One notes that the bubble formula (4.12) does not depend on the strike price K. Thus,

the so-called eta (sometimes also known as strike delta) is the same for both equations

(4.4) and (4.10). This implies that the second derivative with respect to an option’s strike

price—often used to imply out state-contingent prices as highlighted in Breeden and

Litzenberger (1978)—is also equal.

Proposition 4.2 Let k, x, v, y, and τ be defined as in equations (4.5), (4.6), (4.7), (4.8),

and (4.9), respectively, and take K > 0. Then, the eta of the option pricing solutions

(4.4) and (4.10) is given by

ηc1 =
∂c1t (.)

∂K
= ηc2 =

∂c2t (.)

∂K
= −e−rτ [1−Q (2y; 2 + 2v, 2x)] (4.20)

and the derivative of eta with respect to an option’s strike price is obtained, for i ∈ {1, 2},

as
∂ηci (.)

∂K
= −e−rτ 2y(2− β)

K
p(2y; 2 + 2v, 2x), (4.21)

with

p(x; v, λ) =
1

2
e−(λ+x)/2

(
x

λ

)(v−2)/4

I(v−2)/2(
√
λx), x > 0, (4.22)

being the probability density function of a noncentral chi-square law with v ≥ 0 de-

grees of freedom and noncentrality parameter λ ≥ 0, as given in Johnson et al. (1995,

Equation 29.4), while Iq(·) is the modified Bessel function of the first kind of order q, as

defined by Abramowitz and Stegun (1972, Equation 9.6.10).

66



Proof. We first note that ηc1 = ηc2, because ∂Πt(.)
∂K

= 0. Hence, for i ∈ {1, 2},

ηci =
∂cit (.)

∂K
(4.23)

= St e
−qτ ∂Q (2x; 2v, 2y)

∂K
− e−rτ [1−Q (2y; 2 + 2v, 2x)] +Ke−rτ ∂Q (2y; 2 + 2v, 2x)

∂K
.

Using the derivatives shown in Larguinho et al. (2013, Equations A2a and A2b) and

since
∂2x

∂K
= 0 (4.24)

and
∂2y

∂K
=

2y(2− β)

K
, (4.25)

then it is straightforward to compute the following partial derivatives:

∂Q(2y; v, 2x)

∂K
=

∂Q(2y; v, 2x)

∂2y

∂2y

∂K
= −2y(2− β)

K
p(2y; v, 2x) (4.26)

and
∂Q(2x; v, 2y)

∂K
=

∂Q(2x; v, 2y)

∂2y

∂2y

∂K
=

2y(2− β)

K
p(2x; v + 2, 2y). (4.27)

Replacing equations (4.26) and (4.27) into equation (4.23) and considering the relation

p (λ; v, x) =

(
λ

x

) v−2
2

p (x; v, λ) , (4.28)

equation (4.23) can be rewritten as

ηci = −e−rτ [1−Q (2y; 2 + 2v, 2x)]

+
2y(2− β)

K
p (2x; 2 + 2v, 2y)

[
St e

−qτ −
(
x

y

)−v

Ke−rτ

]
. (4.29)
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Finally, equation (4.20) arises immediately because (x/y)−v Ke−rτ = St e
−qτ . Equation

(4.21) is obtained by using the partial derivative (4.26).�

As expected, Equation (4.20) shows that ηci, for i ∈ {1, 2}, can be interpreted as the

discounted risk-neutral probability of the call ending up in-the-money (assuming one

takes the absolute value of the call strike delta). Alternatively, Equation (4.20) implies

that ηci can be interpreted also as a short position in a European-style cash-or-nothing

call option that pays nothing if the underlying asset price St ends up below or equal to

the strike price K at the maturity date T and pays a fixed cash amount of $1 if it ends

up above the strike price (that is, if ST > K). Since the time-T price of a European-

style cash-or-nothing call on the asset price S, with strike K, predetermined fixed cash

amount of $1 and maturity at time T (≥ t) is equal to 11{ST>K}, then the presence of

bubbles will not imply different pricing solutions for European-style digital and range

digital options.4.5

4.4 Numerical applications

Panels A and B of Table 1 report the prices of European-style calls and the corre-

sponding sensitivity measures adopting the parameters configuration of Larguinho et

al. (2013, Table 3), that is S0 = 100, K ∈ {95, 100, 105}, σ0 = σ(S0) = 0.25, r = 0.10,

q = 0 and τ = 0.50, but with β ∈ {3, 4, 5, 6, 7, 8, 9}. As usual, the scale parameter δ is

computed through the local volatility function (4.2). The call prices shown in the third

column of panels A and B of the table are obtained using equations (4.4) and (4.10),

respectively. The Greeks reported in Panel A are calculated using the solutions of-

fered by Larguinho et al. (2013), while the Greeks highlighted in Panel B are computed
4.5However, similarly to the case of plain-vanilla calls, the presence of bubbles will imply at least two different

solutions for European-style asset-or-nothing calls, range asset options, gap call options and (single and double)
barrier call options whenever β > 2.
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through Corollary 1. All the required noncentral chi-square distribution functions are

computed via Benton and Krishnamoorthy (2003) algorithm.

[Please insert Table 1 about here.]

Panels A and B of Table 2 show the bubble values and the absolute percentage relative

errors defined by (f̂i − fi)/fi, respectively, where fi is the risk-neutral value obtained

via Heston et al. (2007) formula and f̂i denotes the corresponding value estimated by

Emanuel and MacBeth (1982) solution, using the same parameters configuration of

Table 1.

[Please insert Table 2 about here.]

There are several points that are noteworthy to highlight from these two tables. Call

prices, deltas, gammas, vegas and rhos obtained via Emanuel and MacBeth (1982)

formula are higher than the corresponding ones computed through the risk-neutral so-

lutions based on Heston et al. (2007), thus originating positive bubble values for this

constellation of parameters. For the theta case, however, we observe the oppositive

behavior, which results in a negative bubble value for theta. These are the most com-

mon relations between both pricing solutions and the corresponding Greeks. We note

also that, as expected, the bubble values shown in Panel A of Table 2 are the same for

different moneyness levels since they do not depend on the strike price K.

We observe also that bubble values are almost insignificant for β ∈ {3, 4}, at least for

the set of parameters under analysis. However, the case with β = 5 produces a bubble

value in the call that is about 1 penny, as shown in Panel A of Table 2. Hence, the

bubble values of call prices and Greeks for β = 5 seem to be not negligible anymore.

Much more pronounced differences are revealed for the cases with β ∈ {6, 7, 8, 9}.
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Moreover, we document that both the risk-neutral gamma and vega can be negative

for the three moneyness levels, as revealed in Panel B of Table 1, and not only for

the limiting case of K = 0 highlighted in Veestraeten (2017). It is well known that

this limiting case produces a concave relation between the risk-neutral call price and

the stock price, as noted in Cox and Hobson (2005) and Ekström and Tysk (2009).

However, larger values for the strike price K may create also unusual patterns in which

the familiar convex relation between the risk-neutral call price and the stock price turns

into a concave relationship for larger stock prices. As argued by Veestraeten (2017),

such concavity behavior in the call option price might suggest the presence of a bubble

in the underlying stock price.

We note also that the gammas and vegas presented in Panel A of Table 2 are equal to

the risk-neutral sensitivity measures of the corresponding puts, as shown in Larguinho

et al. (2013, Equations A13 and A15), respectively. Hence, observing larger gam-

mas and vegas of puts than those of identical risk-neutral calls might be used as an

option-based test for the potential presence of a bubble in the underlying stock price.

Interestingly, Panel B of Table 2 reveals that the absolute percentage relative errors are

equal for gammas and vegas, that is

ΓΠ

Γc2
=

VΠ

Vc2
. (4.30)

The rationale for this result is explained by the existence of a direct link between gamma

and vega that is valid not only for the bubble values and the (risk-neutral) gamma

and vegas appearing in equation (4.30), but also for the gamma and vega derived in

Larguinho et al. (2013, Equations A13 and A15), that is

ΓΠ

VΠ

=
Γc2

Vc2
=

Γc1

Vc1
. (4.31)
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Using equations (4.16) and (4.18) we are able to express a general relation between

gammas and vegas of a CEV process as

ΓΠ

VΠ

=
σx

2v2S2
. (4.32)

Clearly, the use of this link allows us to compute the value of any vega under the CEV

process (with β > 2) through the corresponding gamma value multiplied by the positive

term 2v2S2(σx)−1. This should have the potential to reduce the hedging costs when

implementing a delta-gamma-vega neutral strategy, because such objective might be

accomplished by simply using only one traded option instead of two traded derivatives

on the underlying asset that are usually required for a portfolio to be both gamma and

vega neutral.

The risk-neutral theta can assume positive values, as shown in Panel B of Table 1.

Such possibility have been also discussed in Pal and Protter (2010) in the context of

an inverse Bessel process and in Veestraeten (2017) under the nested CEV process.

Finally, the risk-neutral rho typically returns a positive value. However, it can be nega-

tive for the case of calls that are deep in-the-money.

As expected, Tables 1 and 2 report results that do not represent a sufficiently large

enough sample to take more robust conclusions, thus giving only a preliminary flavor

of the results. Hence, to better assess the impact of different call and Greeks solutions

when β > 2 we follow the guidelines of Broadie and Detemple (1996) by conducting

a careful large sample evaluation of 17,500 randomly generated contracts. To accom-

plish this purpose, we fix the initial asset price at S0 = 100 and take the strike price K

to be uniform between 70 and 130. The volatility σ0 is distributed uniformly between

0.10 and 0.60 and the scale parameter δ is then computed. Time to maturity is, with

probability 0.75, uniform between 0.1 and 1.0 years and, with probability 0.25, uniform
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between 1.0 and 5.0 years. The dividend yield q is uniform between 0.0 and 0.1. The

riskless rate r is uniform between 0.0 and 0.1. The β parameter is distributed uniformly

between each of the seven considered intervals with β ∈ ]2, 3], ..., ]8, 9].

Table 3 reports the mean, maximum, minimum, median and the 75th and 95th per-

centile statistic measures of the bubble values for 2,500 random samples of prices

and Greeks of European-style call options under the CEV model and for different in-

tervals of β values, thus resulting in a large sample of 17,500 contracts. Bubbles in

call prices are computed via equation (4.12), while bubbles in Greeks are calculated

through Proposition 4.1.

[Please insert Table 3 about here.]

While the bubble values for β ∈ {3, 4} reported in Table 2 seem to be negligible from

a practical point of view, the results of Table 3 clearly show that significant bubble

values might be obtained even in the range of β ∈ ]2, 5]. This suggests that for some

CEV applications with β > 2 the use of call prices and Greeks based on the Emanuel

and MacBeth (1982) formula might originate expensive option prices and inadequate

sensitivity measures for hedging purposes.4.6 To sum up, it is better to replace the usual

solutions based on Emanuel and MacBeth (1982) formula by the risk-neutral solutions

for future theoretical and empirical applications of the CEV process with β > 2.

4.5 Conclusions

The discounted price process under the CEV is not a martingale for options markets

with upward sloping implied volatility smiles, which implies the existence of (at least)
4.6For example, Choi and Longstaff (1985, Page 252) reported β values ranging from 4.38 to 5.02 in their

application of the CEV model for pricing options on agricultural futures, but using the Emanuel and MacBeth
(1982) solution.
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two option prices for the call option: the price for which the put-call parity holds and

the price representing the lowest cost of replicating the payoff of the call. This article

derives closed-form solutions for the Greeks of the risk-neutral call option pricing solu-

tion that are valid for any CEV process exhibiting forward skew volatility smile patterns.

Overall, we find that the Greeks of the risk-neutral call offered by Heston et al. (2007)

can differ significantly from the ones calculated for the Emanuel and MacBeth (1982)

solution, which may lead to much more expensive hedging strategies when using the

latter formulae.

73



Table 1: Prices and Greeks of European-style call options under the CEV model

K β Call Delta Gamma Vega Theta Rho
Panel A: Emanuel and MacBeth (1982)

95 9 12.1710 0.8453 0.0141 21.1237 -11.6464 31.8274
95 8 12.2195 0.8322 0.0145 21.1837 -11.6410 31.7254
95 7 12.2720 0.8189 0.0150 21.3085 -11.6505 31.6167
95 6 12.3281 0.8053 0.0155 21.4905 -11.6731 31.5023
95 5 12.3877 0.7912 0.0161 21.7198 -11.7066 31.3830
95 4 12.4507 0.7767 0.0167 21.9923 -11.7499 31.2590
95 3 12.5174 0.7616 0.0174 22.3075 -11.8030 31.1304

100 9 9.7146 0.7625 0.0187 28.0625 -12.5133 27.4885
100 8 9.6747 0.7444 0.0189 27.5108 -12.3736 27.4796
100 7 9.6439 0.7270 0.0191 27.0913 -12.2670 27.4709
100 6 9.6206 0.7102 0.0194 26.7924 -12.1907 27.4628
100 5 9.6034 0.6938 0.0197 26.5816 -12.1366 27.4562
100 4 9.5915 0.6774 0.0201 26.4399 -12.1002 27.4513
100 3 9.5845 0.6611 0.0206 26.3580 -12.0791 27.4483
105 9 7.9209 0.6859 0.0220 32.9772 -12.9528 23.5422
105 8 7.7639 0.6602 0.0218 31.7991 -12.6424 23.4632
105 7 7.6250 0.6366 0.0217 30.8169 -12.3851 23.4041
105 6 7.5009 0.6149 0.0217 30.0438 -12.1835 23.3629
105 5 7.3880 0.5944 0.0218 29.4169 -12.0217 23.3376
105 4 7.2843 0.5749 0.0220 28.8940 -11.8889 23.3270
105 3 7.1884 0.5561 0.0222 28.4533 -11.7794 23.3304

Panel B: Heston et al. (2007)
95 9 9.0658 0.4506 -0.0137 -20.4309 0.6661 22.2082
95 8 10.2474 0.5607 -0.0085 -12.3893 -1.9259 25.1162
95 7 11.3351 0.6749 -0.0002 -0.2272 -5.5655 28.1117
95 6 12.0860 0.7618 0.0096 13.2881 -9.4106 30.4429
95 5 12.3743 0.7882 0.0155 20.9513 -11.4997 31.3092
95 4 12.4507 0.7767 0.0167 21.9919 -11.7498 31.2590
95 3 12.5174 0.7616 0.0174 22.3075 -11.8030 31.1304

100 9 6.6094 0.3679 -0.0090 -13.4921 -0.2008 17.8692
100 8 7.7026 0.4728 -0.0042 -6.0622 -2.6585 20.8704
100 7 8.7070 0.5830 0.0039 5.5556 -6.1821 23.9658
100 6 9.3786 0.6668 0.0134 18.5900 -9.9282 26.4034
100 5 9.5900 0.6907 0.0191 25.8131 -11.9297 27.3823
100 4 9.5915 0.6774 0.0201 26.4395 -12.1001 27.4512
100 3 9.5845 0.6611 0.0206 26.3580 -12.0791 27.4483
105 9 4.8157 0.2913 -0.0057 -8.5774 -0.6402 13.9230
105 8 5.7919 0.3887 -0.0012 -1.7740 -2.9273 16.8540
105 7 6.6881 0.4927 0.0065 9.2813 -6.3002 19.8991
105 6 7.2588 0.5714 0.0158 21.8415 -9.9210 22.3034
105 5 7.3746 0.5914 0.0212 28.6484 -11.8148 23.2637
105 4 7.2843 0.5749 0.0220 28.8936 -11.8888 23.3270
105 3 7.1884 0.5561 0.0222 28.4533 -11.7794 23.3304

Panels A and B of this table value European-style call options and the corresponding sensitivity mea-
sures based on the option pricing solutions of Emanuel and MacBeth (1982) and Heston et al. (2007),
respectively, adopting the parameter configurations of Larguinho et al. (2013, Table 3), that is S0 = 100,
K ∈ {95, 100, 105}, σ0 = σ(S0) = 0.25, r = 0.10, q = 0 and τ = 0.50, but with β ∈ {3, 4, 5, 6, 7, 8, 9}.
The call prices shown in the third column of the table are obtained using equations (4.4) and (4.10),
respectively. The Greeks reported in Panel A are calculated using the solutions offered by Larguinho et
al. (2013), while the Greeks highlighted in Panel B are computed through Corollary 1.
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Table 2: Bubble values and absolute percentage relative errors of prices and Greeks of European-
style call options under the CEV model

K β Call Delta Gamma Vega Theta Rho
Panel A: Bubble values

95 9 3.1052 0.3947 0.0278 41.5546 -12.3125 9.6192
95 8 1.9721 0.2715 0.0230 33.5730 -9.7151 6.6092
95 7 0.9369 0.1440 0.0152 21.5356 -6.0849 3.5050
95 6 0.2420 0.0434 0.0059 8.2024 -2.2625 1.0594
95 5 0.0134 0.0030 0.0006 0.7685 -0.2069 0.0738
95 4 3.47E-06 1.12E-06 3.31E-07 4.35E-04 -1.14E-04 2.76E-05
95 3 0.00E+00 4.89E-26 3.05E-26 3.91E-23 -1.00E-23 1.23E-24

100 9 3.1052 0.3947 0.0278 41.5546 -12.3125 9.6192
100 8 1.9721 0.2715 0.0230 33.5730 -9.7151 6.6092
100 7 0.9369 0.1440 0.0152 21.5356 -6.0849 3.5050
100 6 0.2420 0.0434 0.0059 8.2024 -2.2625 1.0594
100 5 0.0134 0.0030 0.0006 0.7685 -0.2069 0.0738
100 4 3.47E-06 1.12E-06 3.31E-07 4.35E-04 -1.14E-04 2.76E-05
100 3 0.00E+00 4.89E-26 3.05E-26 3.91E-23 -1.00E-23 1.23E-24
105 9 3.1052 0.3947 0.0278 41.5546 -12.3125 9.6192
105 8 1.9721 0.2715 0.0230 33.5730 -9.7151 6.6092
105 7 0.9369 0.1440 0.0152 21.5356 -6.0849 3.5050
105 6 0.2420 0.0434 0.0059 8.2024 -2.2625 1.0594
105 5 0.0134 0.0030 0.0006 0.7685 -0.2069 0.0738
105 4 3.47E-06 1.12E-06 3.31E-07 4.35E-04 -1.14E-04 2.76E-05
105 3 0.00E+00 4.89E-26 3.05E-26 3.91E-23 -1.00E-23 1.23E-24

Panel B: Absolute percentage relative errors
95 9 34.25 87.58 203.39 203.39 1,848.46 43.31
95 8 19.24 48.43 270.98 270.98 504.44 26.31
95 7 8.27 21.33 9,479.10 9,479.10 109.33 12.47
95 6 2.00 5.70 61.73 61.73 24.04 3.48
95 5 0.11 0.38 3.67 3.67 1.80 0.24
95 4 2.78E-05 1.44E-04 1.98E-03 1.98E-03 9.73E-04 8.84E-05
95 3 0.00E+00 6.42E-24 1.75E-22 1.75E-22 8.50E-23 3.96E-24

100 9 46.98 107.28 307.99 307.99 6,130.87 53.83
100 8 25.60 57.42 553.81 553.81 365.43 31.67
100 7 10.76 24.69 387.64 387.64 98.43 14.62
100 6 2.58 6.51 44.12 44.12 22.79 4.01
100 5 0.14 0.44 2.98 2.98 1.73 0.27
100 4 3.61E-05 1.66E-04 1.65E-03 1.65E-03 9.45E-04 1.01E-04
100 3 0.00E+00 7.40E-24 1.48E-22 1.48E-22 8.30E-23 4.49E-24
105 9 64.48 135.49 484.47 484.47 1,923.08 69.09
105 8 34.05 69.86 1,892.53 1,892.53 331.88 39.21
105 7 14.01 29.22 232.03 232.03 96.58 17.61
105 6 3.33 7.60 37.55 37.55 22.80 4.75
105 5 0.18 0.51 2.68 2.68 1.75 0.32
105 4 4.76E-05 1.95E-04 1.51E-03 1.51E-03 9.61E-04 1.19E-04
105 3 0.00E+00 8.80E-24 1.38E-22 1.38E-22 8.52E-23 5.29E-24

Panels A and B of this table report the bubble values and the absolute percentage relative errors defined
by (f̂i − fi)/fi, respectively, where fi is the risk-neutral value obtained via Heston et al. (2007) formula
and f̂i denotes the corresponding value estimated by Emanuel and MacBeth (1982) solution using the
parameters configuration of Table 1.
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Table 3: Bubble values for large samples of randomly generated prices and Greeks of European-
style call options under the CEV model

Call Delta Gamma Vega Theta Rho
β ∈ ]8, 9]

Mean 10.6002 0.5220 0.0113 32.9920 -6.9980 29.8515
Maximum 52.9749 0.9887 0.0275 93.6827 1.3621 163.8070
Minimum 0.00E+00 3.26E-22 9.88E-22 1.06E-19 -18.0448 1.70E-21
Median 9.1934 0.6420 0.0102 37.6620 -7.6218 20.4989
75th Percentile 17.5038 0.7971 0.0186 43.4777 -1.2841 31.5320
95th Percentile 27.9577 0.8938 0.0248 63.2290 -2.39E-16 109.6067

β ∈ ]7, 8]

Mean 10.0141 0.4691 0.0102 33.4435 -6.9786 27.6693
Maximum 54.0942 0.9846 0.0236 98.8360 1.3207 156.0623
Minimum 0.00E+00 3.69E-33 1.41E-32 1.45E-30 -18.9103 1.88E-32
Median 7.7978 0.5699 0.0097 39.9060 -6.9546 17.9209
75th Percentile 17.0282 0.7543 0.0169 45.7373 -0.8539 29.8269
95th Percentile 28.8182 0.8720 0.0215 66.7960 -1.81E-19 106.2715

β ∈ ]6, 7]

Mean 9.0903 0.4021 0.0087 33.1418 -6.7642 24.8640
Maximum 54.6910 0.9829 0.0201 104.3462 1.1735 143.9497
Minimum 0.00E+00 3.81E-49 1.74E-48 1.85E-46 -19.0374 1.97E-48
Median 5.8005 0.4476 0.0092 40.8787 -5.1307 14.1560
75th Percentile 15.5639 0.6945 0.0145 48.7142 -0.4761 27.4921
95th Percentile 29.6413 0.8335 0.0181 69.2197 -4.32E-23 101.9081

β ∈ ]5, 6]

Mean 7.6999 0.3177 0.0069 31.4264 -6.1151 21.1408
Maximum 55.6142 0.9768 0.0163 105.8785 1.0194 131.9322
Minimum 0.00E+00 5.24E-89 3.24E-88 3.42E-86 -19.9382 2.70E-88
Median 3.1676 0.2695 0.0078 35.9988 -3.5548 8.6280
75th Percentile 12.7450 0.5961 0.0120 51.3724 -0.0809 23.8891
95th Percentile 29.7843 0.7791 0.0146 75.7301 -1.81E-32 95.1721

β ∈ ]4, 5]

Mean 5.5542 0.2084 0.0045 26.5558 -4.6379 15.9319
Maximum 55.6434 0.9625 0.0127 116.3126 5.37E-01 120.1965
Minimum 0.00E+00 2.99E-187 2.72E-186 2.81E-184 -20.3148 1.53E-186
Median 0.8610 0.0842 0.0033 16.2364 -2.0230 2.6981
75th Percentile 7.4501 0.3884 0.0090 50.3903 -6.29E-04 16.1825
95th Percentile 27.6970 0.6883 0.0112 80.6022 -3.22E-53 85.5039

β ∈ ]3, 4]

Mean 2.8168 0.0872 0.0016 15.6629 -1.8069 9.0263
Maximum 53.0964 0.9258 0.0091 125.2368 0.00E+00 109.8012
Minimum 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -17.8788 0.00E+00
Median 3.10E-03 4.42E-04 5.47E-05 1.62E-01 -4.01E-02 1.65E-02
75th Percentile 9.94E-01 6.99E-02 2.90E-03 1.73E+01 -1.42E-13 3.15E+00
95th Percentile 21.0235 0.5425 0.0067 86.5274 -1.12E-134 69.2600

β ∈ ]2, 3]

Mean 0.3754 0.0107 0.0002 3.3857 -0.1945 1.5211
Maximum 32.6016 0.6606 0.0048 132.5431 0.00E+00 87.8428
Minimum 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -9.2470 0.00E+00
Median 0.00E+00 4.77E-55 3.80E-55 5.65E-52 -1.80E-52 1.68E-53
75th Percentile 8.44E-10 1.64E-10 2.59E-11 1.32E-07 0.00E+00 8.73E-09
95th Percentile 0.7734 0.0324 9.67E-04 17.8168 0.00E+00 5.2441

This table reports some statistics of the bubble values for 2,500 random samples of prices and Greeks
of European-style call options under the CEV model and for different intervals of β values. Bubbles in
call prices are computed via equation (4.12), while bubbles in Greeks are calculated through Proposition
4.1.

76



5. Conclusion

This thesis provides important results concerning the valuation of European and Amer-

ican options in three separate articles.

The first paper examines the choice of method for computing the option hedge ratios

studied by Pelsser and Vorst (1994), Chung and Shackleton (2002), and Chung et

al. (2011), but assumes the underlying stock price is governed by a CEV diffusion

process. Contrary to what was found by Chung and Shackleton (2002) under the GBM

assumption, we show that, under the CEV model, an extended tree design is the key

feature for generating accurate and fast calculations of Greeks if one ignores the use of

a Richardson extrapolation technique. However, an extended tree binomial CEV model

with the smooth and monotonic convergence property is the most efficient method for

computing Greeks under the CEV diffusion process because one can apply the two-

point extrapolation formula suggested by Chung et al. (2011).

The second paper provides a simple non-time recursive iterative method to obtain the

early exercise boundary of American-style options under the CEV model, which allows

us to compute accurate option prices and hedge ratios under such local volatility diffu-

sion process. The new early exercise premium representation nests, as a special case,

the integral representation derived by Kim et al. (2013) in the context of the log-normal

diffusion.
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Although the non-time recursive iterative method is accurate and efficient for valuing

and hedging options under both the GBM and CEV diffusions, it also has the potential

to be applicable for more general processes beyond these two models.

The third article derives closed-form solutions for the Greeks of the risk-neutral call op-

tion pricing solution that are valid for any CEV process exhibiting forward skew volatility

smile patterns. Overall, we find that the Greeks of the risk-neutral call offered by He-

ston et al. (2007) can differ significantly from the ones calculated for the Emanuel and

MacBeth (1982) solution, which may lead to much more expensive hedging strategies

when using the latter formulae.
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Cruz, Aricson and José Carlos Dias, 2017, The Binomial CEV Model and the Greeks,

Journal of Futures Markets 37, 90–104.

Davydov, Dmitry and Vadim Linetsky, 2001, Pricing and Hedging Path-Dependent Op-

tions under the CEV Process, Management Science 47, 949–965.

Delbaen, Freddy and Hiroshi Shirakawa, 2002, A Note on Option Pricing for the Con-

stant Elasticity of Variance Model, Asian-Pacific Financial Markets 9, 85–99.

Dennis, Patrick and Stewart Mayhew, 2002, Risk-Neutral Skewness: Evidence from

Stock Options, Journal of Financial and Quantitative Analysis 37, 471–493.
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