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Presidente:
Reitor da Universidade Técnica de Lisboa
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Lisboa, Março de 1999





Aos meus amigos.





Je n'ai fait 
elle-
i plus longue que par
e que jen'ai pas eu le loisir de la faire plus 
ourte.Blaise Pas
al





A
knowledgements
It is sometimes said that the order by whi
h names are mentioned in the a
knowledgments has nospe
ial meaning. Not in this 
ase. Without Prof. Augusto Albuquerque's friendship, withouthis en
ouragements, and without his supervision, this thesis would not have been possible.Thanks.To Jo~ao Luis Sobrinho and Carlos Pires, for their friendship and support.To all my 
olleagues in ISCTE, for their good will. Spe
ial thanks to Luis Nunes and FilipeSantos, they know why.To the sta� of the Image Group of the Universitat Polit�e
ni
a de Catalunya, for a

epting meas their own during a month of valuable dis
ussions. It was a fundamental month.To Prof. Carlos Salema, for his willingness to supervise this thesis all this time. For his patien
e.To the Image Group of IST, for their friendship and for the pleasant lun
h dis
ussions, alwaysstimulating, seldom te
hni
al...To the Instituto de Tele
omuni
a�
~oes, for the oÆ
e and equipment I used for so long.To Prof. Fernando Pereira whom, by allowing me to work for the CEC RACE MAVT proje
t,greatly fa
ilitated my 
onta
ts with the international video 
oding 
ommunity.To my friends, who always trusted me more than I did myself.This thesis was partially funded by the CIENCIA and PRAXIS programs of JNICT. A sub-stantial part of this work was done while I was working for the CEC MAVT RACE proje
t,and while I was working as a resear
h assistant in ISCTE.

i



ii ACKNOWLEDGEMENTS



Agrade
imentos
Costuma-se dizer nos agrade
imentos que a ordem pela qual os nomes apare
em n~ao tem qual-quer signi�
ado. N~ao �e o 
aso. Sem a amizade do Prof. Augusto Albuquerque, sem os seusen
orajamentos e sem a sua orienta�
~ao, esta tese n~ao teria realmente sido poss��vel. Bem haja.Ao Jo~ao Luis Sobrinho e ao Carlos Pires, pelo apoio e amizade.Aos 
olegas do ISCTE, agrade�
o a sua enorme boa vontade. Agrade
imentos espe
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Abstra
t
Video 
oding has been under intense s
rutiny during the last years. The published internationalstandards rely on low-level vision 
on
epts, thus being �rst-generation. Re
ently standardiza-tion started in se
ond-generation video 
oding, supported on mid-level vision 
on
epts su
h asobje
ts.This thesis presents new ar
hite
tures for se
ond-generation video 
ode
s and some of the re-quired analysis and 
oding tools.The graph theoreti
 foundations of image analysis are presented and algorithms for generalizedshortest spanning tree problems are proposed. In this light, it is shown that basi
 versionsof several region-oriented segmentation algorithms address the same problem. Globalization ofinformation is studied and shown to 
onfer di�erent properties to these algorithms, and to trans-form region merging in re
ursive shortest spanning tree segmentation (RSST). RSST algorithmsattempting to minimize global approximation error and using aÆne region models are shownto be very e�e
tive. A knowledge-based segmentation algorithm for mobile videotelephony isproposed.A new 
amera movement estimation algorithm is developed whi
h is e�e
tive for image stabiliza-tion and s
ene 
ut dete
tion. A 
amera movement 
ompensation te
hnique for �rst-generation
ode
s is also proposed.A systematization of partition types and representations is performed with whi
h partition
oding tools are overviewed. A fast approximate 
losed 
ubi
 spline algorithm is developedwith appli
ations in partition 
oding.

Keywords: visual 
oding, se
ond-generation video 
oding, image analysis, image segmentation,temporal 
oheren
e, motion estimation. v
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Resumo
A 
odi�
a�
~ao de v��deo tem sido intensamente estudada nos �ultimos anos. As normas interna
io-nais j�a publi
adas baseiam-se em 
on
eitos da vis~ao de baixo n��vel, sendo portanto de primeiragera�
~ao. Come�
ou re
entemente a normaliza�
~ao de t�e
ni
as de 
odi�
a�
~ao de segunda gera�
~ao,suportada em 
on
eitos da vis~ao de m�edio n��vel tais 
omo obje
tos.Esta tese apresenta novas arquite
turas para 
odi�
adores de v��deo de segunda gera�
~ao e algu-mas das 
orrespondentes ferramentas de an�alise e 
odi�
a�
~ao.Apresentam-se fundamentos de teoria dos grafos apli
ada �a an�alise de imagem e prop~oem-se al-goritmos para generaliza�
~oes do problema da �arvore abrangente m��nima. Mostra-se que vers~oesb�asi
as de v�arios algoritmos de segmenta�
~ao orientados para a regi~ao resolvem o mesmo pro-blema. Estuda-se a globaliza�
~ao de informa�
~ao e mostra-se que 
onfere propriedades diferentesa esses algoritmos, transformando o algoritmo de fus~ao de regi~oes no algoritmo de �arvoresabrangentes m��nimas re
ursivas (RSST). Mostra-se a e�
�a
ia de algoritmos RSST que tentamminimizar o erro global de aproxima�
~ao e que usam modelos de regi~ao a�ns. Prop~oe-se umalgoritmo baseado em 
onhe
imento pr�evio para segmenta�
~ao em v��deo-telefonia m�ovel.Desenvolve-se um um algoritmo de estima�
~ao de movimentos de 
âmara e�
az na estabiliza�
~aode imagem e na dete
�
~ao de mudan�
as de 
ena. Prop~oe-se tamb�em uma t�e
ni
a de 
ompensa�
~aode movimentos de 
âmara para 
odi�
adores de primeira-gera�
~ao.Sistematizam-se os tipos e as representa�
~oes de regi~oes, revendo-se depois t�e
ni
as de 
odi�
a�
~aode parti�
~oes. Desenvolve-se um algoritmo r�apido e aproximado para 
�al
ulo de splines 
�ubi
asfe
hadas.

Palavras 
have: 
odi�
a�
~ao visual, 
odi�
a�
~ao de v��deo de segunda gera�
~ao, an�alise de ima-gem, segmenta�
~ao de imagem, 
oerên
ia temporal, estima�
~ao de movimento.vii
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Chapter 1
Introdu
tion

\The time has 
ome," the Walrus said,\To talk of many things:" Lewis Carroll
The performan
e of 
lassi
al video 
oding algorithms, in terms of the 
lassi
al 
oding 
riteria(bitrate, distortion, and 
ost), seems to be rea
hing a plateau [161, 3℄. That is, the marginalperforman
e gains of tuning these algorithms are now nearly negligible. A

ording to Adelsonet al. [3, 195℄, the 
lassi
al approa
hes use 
on
epts usually related to low-level vision, su
has luminan
e, 
olor, spatial frequen
y, temporal frequen
y, lo
al motion, and low-level opera-tors su
h as linear �ltering and transforms. New approa
hes, using mid-level visual 
on
epts,su
h as regions, textures, surfa
es, depth, global motion, and lighting, are deemed ne
essaryfor a breakthrough in video 
oding performan
e. This need has been re
ognized for some timenow [144, 141, 96℄, though limited 
omputing 
apabilities have hindered somewhat the advan
estowards the implementation of 
omplete mid-level vision video (se
ond-generation) 
oding al-gorithms.During the last years, and following the ever in
reasing advan
es of te
hnology, the use of imageand video in everyday life has been growing 
ontinuously. This has sparkled new needs amongusers: intera
tivity, 
ontent editing, and 
ontent based indexing are just a few examples. Theseneeds require the a

ess to the 
ontent of video sequen
es. This a

ess may, in some 
ases, bedone after en
oding and de
oding, i.e., by performing analysis at the re
eiver side. In most
ases, though, it is essential to have this 
apability dire
tly at bit stream level. Content a

essshould thus be done with a minimum of e�ort: a \fourth [
oding℄ 
riterion" has been identi�ed,
oined by Pi
ard [162℄ as \
ontent a

ess e�ort." This 
riterion is related to the 
omplexity ore�ort required to a

ess the video 
ontent, and hen
e to provide 
ontent-based fa
ilities.The results obtained until now by mid-level vision video 
oding algorithms, though extremelyimportant, do not show performan
e improvements as large as initially expe
ted [177, 40, 30℄.
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2 CHAPTER 1. INTRODUCTION
However, this apparent la
k of su

ess is truly a misjudgment, sin
e the performan
e has beenmeasured, until now, using only the bitrate, distortion, and 
ost 
riteria. When the fourth
riterion is introdu
ed, the newly developed algorithms 
ertainly have a leading edge over the
lassi
al ones: obje
ts and regions, rather than square blo
ks, are what an user wants to intera
twith.The new users' needs have also been re
ognized by MPEG-4. These ideas were introdu
edin MPEG-4 [138℄ by asking for some \new or improved fun
tionalities" [139℄: 
ontent-basedmanipulation and bit stream editing, 
ontent-based multimedia data a

ess tools, and 
ontent-based s
alability.This thesis summarizes a series of proposals towards 
oding of visual obje
ts. The work hasprogressed over a number of years and 
an be seen as a 
ontribution to the development ofse
ond-generation visual 
oding standards of whi
h MPEG-4 is an example.
1.1 Stru
ture of the thesis
Chapter 2, \Video and multimedia 
ommuni
ations", 
ontains a brief overview of multimedia,the Internet and video 
ommuni
ations. It 
an be seen as a motivation for the work developed.Video 
ode
s are 
lassi�ed as �rst-, se
ond-, or third generation a

ording to the analysis toolsrequired: �rst-generation for low-level vision analysis, se
ond-generation for mid-level visionanalysis, and third-generation for high-level vision analysis. A brief summary of the analysisand 
oding tools proposed in this thesis, organized a

ording to the presented stru
ture, 
an befound in Se
tion 2.6.Chapter 3, \Graph theoreti
 foundations for image analysis", de�nes most of the theoreti
al
on
epts that are used throughout. In this 
hapter the important theory of spanning trees,a bran
h of graph theory, and related 
on
epts using seeds, is dis
ussed together with the
orresponding algorithms. An amortized linear time algorithm is also presented for an important
lass of spanning tree problems.Chapter 4, \Spatial analysis", 
ontains proposals for a knowledge-based mobile videotelephonysegmentation algorithm, an extended RSST (Re
ursive SST) segmentation algorithm using anaÆne region model, a supervised RSST segmentation algorithm, i.e., a RSST algorithm usingseeds, and a time-re
ursive version of the RSST algorithm providing time 
oherent segmentationof moving images. The 
lassi
al segmentation algorithms, su
h as region growing, region merg-ing, edge dete
tion followed by 
ontour 
losing, are all des
ribed in the framework of the theoryof spanning trees introdu
ed in the previous 
hapter. The relations between these algorithmsis dis
ussed in the 
ommon framework of spanning trees. The e�e
ts on these algorithms ofglobalization of information are also dis
ussed.Chapter 5, \Time analysis", proposes a simple algorithm for estimating 
amera movement inmoving images and a method for its 
an
ellation (image stabilization) to improve image qualityin hand-held or 
ar-mounted 
ameras. The algorithm is based on a motion ve
tor �eld obtainedthrough blo
k mat
hing. Several results are shown whi
h demonstrate its e�e
tiveness.
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Chapter 6, \Coding", proposes a method of en
oding 
amera movement information usinga simple extension to the H.261 standard (the dis
ussions on quantization are general andtransposable to any other 
ode
 using motion ve
tor �elds with redu
ed resolution relative tothat of the underlying images) and reviews the important issue of partition representation and
oding. A fast approximation to the 
al
ulation of 
losed 
ubi
 splines is also proposed. Theanalysis and 
oding tools presented in this and the previous two 
hapters 
an be seen as stepstowards the building of tools for a new 
ode
 ar
hite
ture.Chapter 7, \Con
lusions: Proposal for a new 
ode
 ar
hite
ture", proposes a new se
ond-generation 
ode
 ar
hite
ture, makes some suggestions for future work, and lists the thesis
ontributions.Finally, Appendix A des
ribes the test sequen
es used and their formats, and Appendix B
ontains a very brief des
ription of the Frames video 
oding library, whi
h was developed by theauthor as the basis for the implementation of all the algorithms.
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Chapter 2
Video and multimedia
ommuni
ations

It is supposed that be
ause a thing is the rule itis right. Os
ar Wilde

2.1 Trends of multimedia 
ommuni
ations
\Medium" literally means \middle". A

ording to the OALDCE (Oxford Advan
ed Learner'sDi
tionary of Current English) [71℄, it means \that by whi
h something is expressed," i.e., thatby whi
h a message is expressed, sin
e, a

ording to Negroponte [142℄, \the medium is not themessage." Messages 
an be expressed using a variety of media. Multimedia is the pro
ess ofexpressing a message using several media. In this sense, multimedia is not new. Multimediaexists sin
e there are books with images,1 a
tually even before that, sin
e humans 
ommuni
ateby spee
h and gestures.Until last 
entury our ability to store and transmit messages was very limited. Only text and stillimages and diagrams 
ould be stored for future use (e.g., in books), and long range transmissionwas limited to physi
al transport of printed or handwritten material, with rare ex
eptions. Thetelegraph, for long range transmission of text, the telephone, for long range transmission ofvoi
e, the radio, for long range transmission of sound, 
hanged that pi
ture 
onsiderably. Butperhaps the most important inventions of the last 
entury were the phonograph, for storingsounds, and the 
inematograph, by whi
h storing of moving images be
ame possible.1Di�erent media 
an share the same sense (or \
hannel") into the human brain. Text and imagery, thoughdi�erent media, are both sensed using vision. 5
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In the beginning of this 
entury it was possible, at least in prin
iple, to express messages usingmultimedia as we know it today and store them for future use. In pra
ti
e, this happenedonly in the thirties, with the introdu
tion of sound syn
hronized with image in the 
inema.Stereos
opi
 imagery was also available at that time.
2.1.1 Distribution methodsA message, as expressed through moving images and sound in a �lm, is meant to be 
onveyedto a re
eptor. Although movie theaters are still a very su

essful and pro�table way of doingit, they involve 
onsiderable delay and trouble. Using Negroponte's [142℄ \bits" and \atoms"de�nitions, the produ
er distributes the �lm 
artridges (atoms) 
ontaining en
oded images andsounds (bits) whi
h are then broad
asted from a s
reen and speakers to a restri
ted audien
e.2A new distribution paradigm was 
learly ne
essary.TV (Television) partially solved the distribution problem, by using radio broad
ast of analog-i
ally en
oded moving images and sound. However, TV also introdu
ed some new problems:being broad
asted, anybody with a TV set 
ould enjoy it. Who (and how) should then pay forthe 
ontent 
onveyed? From TV taxes (virtually un
hargeable), to in
ome taxes (in the 
aseof subsidized television), through advertisements and mixtures thereof, several solutions havebeen proposed, most of whi
h are still being used to this day. These solutions were not enough.Point-to-point 
ommuni
ation, su
h as that provided by the telephone, was ne
essary.Computer networks, providing point-to-point 
ommuni
ations in a di�erent framework, werealso an important development. In the 1970's the TCP (Transmission Control Proto
ol)/IP (In-ternet Proto
ol) proto
ols were developed and put to use mostly by the government and edu
a-tional institutions in the USA. By the eighties it was spread all over the world, though mostlyrestri
ted to the a
ademi
 world. In the beginning of the nineties, following the development bythe CERN (Conseil Europeen pour la Re
her
he Nu
leaire) of the suite of WWW (World WideWeb) proto
ols and formats, viz. UR*,3 HTTP (Hypertext Transfer Proto
ol), and HTML (Hy-pertext Markup Language), the Web exploded: it be
ame attra
tive to the 
ommon user, andhen
e e
onomi
ally viable.In the late forties, TV started to be distributed by 
able in areas where the broad
ast signal
ould not be re
eived with normal antennas (
ommunity antenna television). Cable televisionwas soon found to o�er 
onsiderable advantages relative to broad
ast television: in
reasedquality, in
reased number of 
hannels through a larger available bandwidth, no need for antennasand thus lower visual impa
t (important in 
ertain urban areas), et
. Re
ently, CATV (CableTelevision) operators, typi
ally di�usion oriented, realized they had deployed over the yearsan almost ubiquitous broadband network whi
h 
ould be improved with small investments toprovide up-links to the user. Thus, with the help of 
able modems, providers started building asort of \residential area networks", 
onne
ting users in the neighborhood to the 
able head-end2Images and sounds in �lm are mostly en
oded in an analog format, even though digital sound is expandingqui
kly. These images and sounds 
ontain information, whi
h 
an be measured in bits, even if digital en
odingis not used.3E.g., URC (Uniform Resour
e Chara
teristi
s), URI (Uniform Resour
e Identi�er), URL (Uniform Resour
eLo
ator), and URN (Uniform Resour
e Name).
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and then
e to the world.The explosion of the Web in the nineties, together with the personal 
omputer and the almostubiquitous wide band CATV networks, suddenly allowed di�erent 
ontent to be delivered todi�erent 
onsumers. Consumers 
ould now 
hoose and even intera
t with the material delivered(and pay a

ordingly): the age of the Web, teleshopping, PPV (Pay-Per-View), VOD (Video-On-Demand) and WebTV was born.
2.1.2 A
tivity paradigms
There are essentially two a
tivity paradigms for information provided to the 
onsumers. Thepush paradigm, when the information provider pushes the information to a passive user, andthe pull paradigm, when the a
tive user requests information from the servi
e provider.TV broad
ast is push, sin
e the information is pushed to the 
onsumer without requiring anya
tion on his part (besides turning the TV on and 
hoosing a 
hannel). However, VOD is pull,sin
e the user requests whatever interests her.The Web, until re
ently, exhibited only the pull behavior. All the a
tion was on the part of theend user, whi
h would always make spe
i�
 requests as to what information should be deliveredto him. Nowadays, the push paradigm has been implemented by most browsers, through the
on
ept of automati
ally updated 
hannels, in a 
lear parallel with TV di�usion.
2.1.3 Convergen
e tenden
ies
Convergen
e of distribution methods and te
hnologies
A wealth of 
ommuni
ation servi
es exist today. Most of the 
hannels involved in these ser-vi
es are slowly being enhan
ed to provide bidire
tional 
ommuni
ations and improved band-width. For instan
e, CATV networks now provide bidire
tional data 
hannels through 
ablemodems, satellite 
onstellations are being deployed for personal mobile 
ommuni
ations, and theUMTS (Universal Mobile Tele
ommuni
ation Servi
e), providing a wider bandwidth than to-day's 
ellular phones, is expe
ted in the near future. Also, the analog 
hannels o�ered by the oldPSTN (Publi
 Swit
hed Telephone Network) are slowly being digitized to provide ISDN (In-tegrated Servi
es Digital Network). Re
ently, ADSL (Asymmetri
 Digital Subs
riber Line)started to be used to establish wideband data 
hannels on the telephoni
 
opper loop.At the same time, all �elds of multimedia and 
ommuni
ations are being enhan
ed throughthe use of digital te
hnology. Digital re
orded sound is already used in the movie theaters(probably to be followed soon by digital moving images) and digital TV will soon be available,and a�ordable, in all developed 
ountries. There is, thus, a 
lear 
onvergen
e towards bothwideband (ex
ept where physi
ally impossible) and bidire
tionality.
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Convergen
e of servi
es and a
tivity paradigms
The servi
es available are also 
onverging. There is a tenden
y to support both broad
ast andpoint-to-point distribution, di�erent media, and both push and pull paradigms. Cable modemsallow point-to-point 
ommuni
ations where formerly broad
ast was the rule, and modems overPOTS (Plain Old Telephone Servi
e) allow broad
ast (or at least the Web equivalent of broad-
ast, multi
ast) where formerly only point-to-point 
ommuni
ations was used. Videotelephoneover POTS is now possible (and soon will be also possible on 
ellular phones), and the TVservi
e was long ago upgraded to in
lude teletext. Videotelephony, on the other hand, is alsopossibly on the Web, and supplements the old pear-to-pear 
ommuni
ations servi
es of theInternet su
h as email and (ele
troni
) talk, and, more re
ently, IRC (Internet Relay Chat).
Convergen
e of 
ontents
On the demand side, 
onsumers require high quality 
ontent. The produ
tion of multimedia
ontent, in whi
h the entertainment industries (TV, 
inema and games) ex
el, is thus thriving.Consumers are also demanding more and more intera
tive 
ontrol over the information theyre
eive, an issue whi
h is a spe
ialty of the informati
s (software/
omputer) industries. Thusthe tenden
y for mergers and a
quisitions between 
ompanies in the entertainment, informati
sand network businesses.Consumers also require mobility and 
ompatibility. Thus large informati
s 
ompanies are alsoinvesting on global, satellite based, mobile networks, and more and more 
are is taken nowadayswith standardization and 
ompatibility by 
ontent providers, TV 
ompanies, and informati
s
ompanies.
2.1.4 A distributed database
It seems reasonable to expe
t that the 
onvergen
e pro
ess will lead to universal a

ess to infor-mation. There will probably be little di�eren
e between TV, phone, fax, and the PC (PersonalComputer). In fa
t, the PC is already doubling as TV, a phone, and a fax. The Web will 
on-ne
t almost everything and everyone. It is expe
ted to provide people with a 
omplete leisure,work, and so
ial environment, a

essed through a wealth of di�erent interfa
es, su
h as s
reenstogether with remote 
ontrols, desktop s
reens, keyboards, pointing devi
es, mi
rophones andspeakers, voi
e 
ontrolled hand-held devi
es with handwritten 
hara
ter re
ognition (e.g., evo-lutions of the PalmPilotTM), data-gloves, et
. Su
h a network of information 
an be seen ahuge distributed, 
haoti
, database. Even today, the amount of information is su
h that spe
ialpurpose indexing me
hanisms and sear
h engines are being developed.
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2.2 Media representation
Take a CD (Compa
t Disk) of an or
hestra playing Mozart's symphony 41, Jupiter. What isthe essential part: the s
ore or the sound (a unique interpretation)? Although 600 megabytesare used in a typi
al CD to store the sound, the 
orresponding s
ore may be stored in mu
h lessspa
e. CD audio does not en
ode the stru
ture: it en
odes, as faithfully as possible, a 
opy ofthe original sound. The same thing happens with fax: I still �nd it frustrating to explain to usersof fax modems why it is they 
an not import the re
eived faxes (mostly text) dire
tly into theirword pro
essors, without using the (still) error prone OCR (Opti
al Chara
ter Re
ognition)software.Consider, however, that faxes were made intelligent: they would analyze the input page, dete
ttext zones, re
ognize the text, and en
ode it as text, instead of bla
k and white raster imagesof 
hara
ters.4 This would 
learly lead to improved usability, if not also to a redu
tion oftransmission time.Visual data, espe
ially video (taken here as sequen
es of images sampled from the natural worlds
ene), is a very important part of today's multimedia, and its importan
e tends to in
rease withthe 
onvergen
e of entertainment and informati
s industries. However, video is still en
odedwith the same \blindness" that a�e
ts fax and CD sound: the stru
tured 
ontents of videos
enes are simply ignored in the en
oding pro
ess, leading to a representation whi
h is not atall stru
tural [142℄, faithful as it may be to the original.Visual analyzers would do the same for video as the hypotheti
al fax analyzer for a bla
k andwhite image: from a sequen
e of video images, they would extra
t a stru
tural representation ofthe s
ene therein, the s
ene's \s
ore" plus \interpretation nuan
es". Su
h a stru
tural represen-tation, aside from the expe
ted e
onomies in en
oded size, would allow the user to manipulatethe s
ene at will: a big step towards 
omplete intera
tivity.The exponential growth of digital te
hnology, where 
lo
k frequen
ies dupli
ate almost everyyear and memory densities (bits per volume) almost tripli
ate in the same period of time, hasled to an ever in
reasing use of 
omputers by 
ontent providers (su
h as �lm produ
ers andTV 
ompanies). Syntheti
 imagery 
orresponds nowadays to an important part of the bitsex
hanged worldwide. However, not mu
h e�ort was put until now into the eÆ
ient (soon tobe de�ned) representation of syntheti
 data, whi
h is inherently stru
tural.Hen
e, two important problems must be solved urgently: how to obtain stru
tural representa-tions from natural data (the s
ore and the interpretation nuan
es from a symphony re
ording,the text from a printed do
ument, the des
ription of the s
ene seen in a video sequen
e) andhow to eÆ
iently en
ode stru
tural representations, either syntheti
 or obtained from naturaldata.The �rst of these problems is analysis. In the 
ase of visual data, analysis is addressed by
omputer vision whi
h, a

ording to [68, Harali
k and Shapiro℄, is \the s
ien
e that developsthe theoreti
al and algorithmi
 basis by whi
h useful information about the world 
an be auto-4When the original text is 
omposed using a word pro
essor, sending it by fax to a remote 
omputer is a bitof a paradox, even though it is still quite 
ommon.
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mati
ally extra
ted and analyzed from an observed image, image set, or image sequen
e from
omputations made by spe
ial-purpose or general-purpose 
omputers."The se
ond problem is related to the en
oding of the stru
tural des
ription of the data. Inthe 
ase of visual data, several en
oding methods have been devised in the past, ranging fromthe analog television standards su
h as NTSC (National Television Systems Committee) andPAL (Phase Alternating Line), to the digital video 
oding standards ITU-T (ITU Tele
om-muni
ation Standardization Se
tor) H.261 [62℄, ISO (International Organization for Standard-ization)/IEC (International Ele
trote
hni
al Commission) MPEG-1 [136℄, and, more re
ently,ITU-T H.263 [63℄ and ISO/IEC MPEG-2 [137℄ (also ITU-T H.262). These standards havetypi
ally dealt with non-stru
tural representations of imagery. The �rst standard to addressstru
tured moving image representations will be ISO/IEC MPEG-4.
2.3 Visual analysis
Even though syntheti
 data amounts to a relevant part of the available multimedia material,natural data will always be present. Natural data 
orresponds to data whi
h is obtained, usuallythrough sampling, from the real world. While it is reasonable to expe
t that sensors, su
h asvideo 
ameras, will in
rease in 
omplexity over the years, for instan
e by in
orporating distan
eor depth sensors, it is unlikely that they will ever provide a stru
tural representation of thesampled data at their output.Hen
e, analysis, that is, the de
omposition of the input data into a meaningful set of somemodel parameters, is a very important task. Automati
 visual analysis, as stated before, isalmost the same as 
omputer vision: \building a des
ription of the shapes and positions ofthings from images" [107℄. With one di�eren
e, however. The purpose of 
omputer vision isultimately the 
omprehension of the s
ene 
aptured by the 
amera, through an emulation ofthe HVS (Human Visual System), while analysis usually has more modest obje
tives.Analysis, as stated, is the identi�
ation of some model parameters. This makes modeling one ofthe most important tasks in resear
h leading to automati
 analysis of video sequen
es, sin
e itseems 
lear that sophisti
ated models 
an lead to a very a

urate representation of the world,but only at the 
ost of a very sophisti
ated, or even impossible, analysis: visual analysis is oftenan ill-posed problem [187, 9℄.Visual analysis 
an have several purposes [29℄:
Analysis for 
odingThe obtaining of a parametri
 des
ription of the observed s
ene. The des
ription 
an laterbe used to re
onstru
t the s
ene so that little or no information is lost. The des
ription 
analso be en
oded and de
oded eÆ
iently (analysis for bandwidth saving), and 
an also bemanipulated (analysis for easy a

ess), so that the user 
an intera
t with the representedworld. The analogy with fax helps here. With \blind" fax, su
h as exists today, to edittext just re
eived is a nightmare. With intelligent fax, however, text would be re
eived assu
h, and thus be fully editable. The same applies to video.
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Analysis for des
ription or indexingThe obtaining of a parametri
 des
ription, though in this 
ase it is not ne
essary to beable to re
onstru
t the observed s
ene or at least the original sampled (or sensed) data.The parameters of the des
ription have mostly a semanti
 meaning, whi
h may help thetask of sear
hing visual data in a database. The model parameters, or features, estimatedor identi�ed, will be used as keys of the database.Analysis for understandingThe pro
ess leading to understanding of the observed s
ene. While visual analysis toolsin general are tools leading to arti�
ial intelligen
e, or so one expe
ts, analysis for under-standing is arti�
ial intelligen
e proper.
Analysis 
an be manual, automati
, or partially automati
, when an automati
 algorithm isguided by user input (hints). An usual path in the resear
h in this area, whi
h, though itprogresses very qui
kly, has still a long way to go, is to allow the algorithms to be supervisedand then attempt to make them automati
. This is a polemi
 issue, however, as 
an be seenin the arti
le \Ignoran
e, myopia, and naivete in 
omputer vision systems" [81℄ and in thesubsequent dialogue in [7℄ and [94℄.
2.3.1 Levels of visual analysisSome authors divide the vision pro
ess into levels [107, 195℄ whi
h are related to the types ofmodels or primitives assumed:
Low-level5 visionThe model is a sequen
e of pixel matrixes. The 
orrelation between pixels is assumedto be high. Evolution from one image to the next is des
ribed by a simple motion �eld,uniform almost everywhere.Mid-level6 visionThe model is a possibly hierar
hi
al set of edge segments, blobs, uniformly textured regions(or equivalently boundaries) or regions of uniform motion. Surfa
es and their relativeposition may also be used. Motion 
an be asso
iated with segments and/or edges orboundaries.High-level7 visionThe model is a set of 3-D obje
ts arranged hierar
hi
ally. Obje
ts are semanti
ally iden-ti�ed. Ea
h obje
t has an asso
iated 
omplex motion.UnderstandingThe role, 
lass or identity of (almost all of) the obje
ts is known.5Or image.6Or primal plus 2 1=2-D sket
hes.7Or 3-D model representation.
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This division is here a mere matter of 
onvenien
e. It is also somewhat arbitrary, sin
e feedba
kme
hanisms seem to exist between the upper and the lower levels of the vision pro
ess. Visualanalysis will be 
lassi�ed in the following a

ording to the �rst three levels, sin
e understandingis not one of the purposes here. The terms low-level, mid-level and high-level analysis will beused throughout this thesis.
2.3.2 Tools for visual analysis
Analysis 
an be seen as being done at three levels: low-, mid-, and high-level. Di�erent imageanalysis tools have been developed over the years whi
h 
an be 
lassi�ed as belonging to ea
hof these levels. Restri
ting attention to those tools more 
losely related to analysis for 
oding,the following (rather in
omplete) 
lassi�
ation 
an be used:
Low-level vision analysisLinear transformations (transforms), frequen
y analysis, motion estimation (opti
al 
ow,blo
k mat
hing), et
.Mid-level vision analysisEdge dete
tion, 
ontour dete
tion, segmentation into synta
ti
ally uniform regions, motionestimation (motion of edges and regions), et
.High-level vision analysis3D (Three-dimensional) stru
ture from shading and motion, 3D stru
ture from disparity(stereo vision), et
.
2.4 Visual 
oding
Coding8 is the pro
ess of translating a sequen
e of symbols belonging to a given alphabet, themessage,9 into a sequen
e of symbols of a di�erent alphabet (usually the binary alphabet).Coding is said to be lossless if the original message 
an be re
overed exa
tly from the en
odedone.Visual 
oding is the pro
ess by whi
h the parameters of the stru
tural representation of a visuals
ene obtained either by analysis or dire
tly, in the 
ase of syntheti
 imagery, are en
oded.When the representation is obtained by analysis of natural data, the term video 
oding if oftenused.8Coding should always be understood as referring to sour
e 
oding throughout this thesis, as opposed to
hannel 
oding.9Note the di�erent meanings of the word \message". In a 
ommuni
ations framework, it is the set of ideasexpressed using a given medium or ensemble of media. In the 
ontext of information theory, it is a sequen
e ofsymbols, to whi
h a measure of information 
an be asso
iated [183℄.
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2.4.1 Obje
tivesEn
oding, the translation between one alphabet and another, 
an have several obje
tives. It
an be seen as the pro
ess of minimizing a 
ost fun
tional given some 
onstraints. There areseveral measures whi
h 
an be used to express both the 
ost fun
tional and the 
onstraints, andwhi
h, weighted di�erently, re
e
t the obje
tives of ea
h parti
ular 
oding s
heme:
Compression ratio (or, inversely, bitrate)The size of the original message divided by the size of the en
oded message, both expressedin bits. By maximizing 
ompression, the bandwidth or spa
e requirements are redu
ed,a

ording to whether the data is transmitted or stored.Quality (or, inversely, distortion)A measure of the di�eren
e between the original message and the one obtained by de
odingthe en
oded message. Error resilien
e is a

ounted for in this measure by allowing errorsto a�e
t the en
oded data.CostThe 
ost of the en
oder and de
oder (weighted appropriately).Content a

ess e�ortA measure of the easiness with whi
h only spe
i�ed parts of the original message 
anbe re
overed from the en
oded message. By maximizing ease of a

ess, simple terminals
an still allow the user to manipulate the s
ene. Video tri
k modes 
an also be seen asrequiring easy a

ess to 
ontents (in this 
ase to single video images).DelayThe interval between the instant a symbol of the original message is input to the en
oderand the 
orresponding symbol is output from the de
oder, assuming no 
hannel delay.
Quality is perhaps the most diÆ
ult measure to make, in the 
ase of visual 
oding. How 
anan obje
tive measure of quality re
e
t the quality of the re
onstru
ted s
ene as per
eived byhumans? Even though studies have been 
ondu
ted over the years to develop su
h a measure,based on the properties of the HVS, no single universally a

epted measure exists. Two measuresof quality are typi
ally used today in the 
ase of video 
oding: a simple obje
tive measure, 
alledPSNR (Peak Signal to Noise Ratio), and subje
tive quality measures based on evaluation by asigni�
ant set of persons.Cost is related mostly to implementation of en
oders and de
oders, though it 
an be relatedalso to the required bandwidth, whi
h is dependent on the 
ompression ratio, and thus already
onsidered through that measure. Implementation 
osts 
an be related to the memory andCPU (Central Pro
essing Unit) power required for both en
oders and de
oders.The 
ost fun
tional and 
onstraints 
an be 
onstru
ted from the measures above so as to re
e
tthe di�erent requirements of an appli
ation. Some appli
ations may require quality as highas possible for a minimum allowed 
ompression ratio, others the highest possible 
ompressionfor a minimum allowed quality. The 
ost of 
oders and de
oders may be weighted di�erently:
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appli
ations where 
ontent is en
oded on
e and de
oded many times put a larger weight on the
ost of de
oders.

2.4.2 Main 
ode
 blo
ks
Figure 2.1 shows a typi
al blo
k stru
ture of a 
ode
. The en
oder part 
onsists of an analysisblo
k, whi
h obtains a stru
tural s
ene representation from given natural data, followed by theen
oder, whi
h en
odes this representation so as to be sent down a logi
al 
hannel (either a real
hannel or some physi
al storage medium). If syntheti
 data is available, it is input dire
tlyto the en
oder without being analyzed, provided it is already des
ribed in an appropriatelystru
tured way. The de
oder performs the opposite tasks. The en
oded data is de
oded soas to obtain the stru
tural s
ene representation whi
h is then used by the renderer to 
reateappropriate stimuli to the human re
eivers, whi
h 
an have di�erent levels of intera
tivity withthe system.Often some pro
essing is performed on the natural data before the analysis proper. This pro-
essing usually intends to �lter or 
ondition the data so as to render the analysis simpler ormore e�e
tive. Sin
e it takes pla
e before analysis and en
oding, it is 
alled pre-pro
essing. Itis often taken as being part of the analysis itself.The word en
oder is used here with two di�erent meanings: in the 
ase of natural data, whi
hrequires analysis, en
oder 
an both mean the 
omplete system, from natural data representationto the resulting en
oded message, or simply the blo
k whi
h translates the stru
tural represen-tation into the en
oded message, whi
h is the stri
t meaning. In the sequel the exa
t meaningwill be evident from the 
ontext.An en
oder, in the broad sense of the word, serves two main purposes. Firstly, it is supposed tostrip irrelevant information (from the point of view of the assumed re
eiver of the information,usually the HVS) from the input. Irrelevan
y removal is done by the analysis blo
k, sin
e,a

ording to Marr [107℄, \vision is a pro
ess that produ
es from images of the external worlda des
ription that is useful to the viewer and not 
luttered with irrelevant information [ouremphasis℄," and to emulate vision is the ultimate purpose of analysis. Se
ondly, the en
oder,again in the broad sense, is supposed to remove redundan
y. This is a role whi
h is sharedby the analysis and the en
oder blo
ks, though the kind of redundan
y removed is di�erent.The analysis blo
k removes representation redundan
y by �tting the input data to a stru
turalmodel. For instan
e, the highly redundant image of a sphere 
an be des
ribed, with an ap-propriate model, by the position and size of the sphere, its surfa
e 
hara
teristi
s, and a setof light sour
es. Su
h a des
ription is mu
h less redundant than the original array of pixels.The en
oder blo
k, on the other hand, removes statisti
al redundan
y from the sequen
e ofsymbols 
orresponding to the stru
tural representation. It must be stressed here that removalof redundan
y is a reversible pro
ess, while removal of irrelevan
y is not. In a sense, thus, it isdesirable that losses in 
oding 
orrespond as mu
h as possible to removal of irrelevan
y.
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Figure 2.1: Basi
 blo
k stru
ture of a 
ode
.

2.4.3 GenerationsIn the 
ase of natural s
enes, i.e., video 
oding, analysis is performed before en
oding proper, as
an be seen in Figure 2.1. Video en
oding te
hniques 
an thus be 
lassi�ed a

ording to the levelof analysis typi
ally required. The terms �rst- and se
ond-generation video 
oding were 
oinedby Kunt et al. [96℄, and 
orrespond approximately to the two �rst levels of analysis presentedbefore. The requirements in terms of analysis of these two generations of video 
oders, plus athird one related with high-level analysis are as follows:
First-generationCoders whi
h require low-level analysis. Hybrid 
oders [64℄ and motion 
ompensatedhybrid 
oders [145℄ belong to this generation. The fundamental tools used in these 
oders,DCT (Dis
rete Cosine Transform) and blo
k mat
hing motion 
ompensation, were alreadydeveloped in the beginning of the eighties. All the already issued video 
oding standards
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belong to this generation.Se
ond-generationCoders whi
h require mid-level analysis. This type of analysis is typi
ally more 
omplexthan low-level analysis. Even though a lot of e�ort has been put into this �eld, a trulyreliable set of mid-level analysis tools is not yet mature. This thesis 
ontributes mainlyto the problem of developing tools at this level.Third-generationCoders whi
h require high-level analysis. No truly reliable automati
 analysis set of toolsexists at this level. Most tools still rely on human supervision, and it probably will remainso for a few more years: most of the semanti
 features/des
riptors 
an only be extra
tedby humans at the present time [29℄.This 
lassi�
ation, though useful, is somewhat arti�
ial. For instan
e, a mid- or high-levelanalysis tool 
an be used to enhan
e a �rst-generation video en
oder. This often happens whenvideo en
oding algorithms are being enhan
ed.

2.5 Standards
Standards are fundamental for universality of servi
e and interworking, both of whi
h are ofparamount importan
e for the end 
onsumer. Standardization, however, is a time-
riti
al pro-
ess: if done too soon, it may not bene�t from the ongoing resear
h in the area, if done too late,it may have to fa
e proprietary solutions proposed by industries of suÆ
ient weight to makethe standard useless.Standards may be of two very di�erent natures. English is a de fa
to language standard in mostof the western world. Fren
h, on the other hand, is a de jure standard, at least in Fran
e: it isstandardized by the A
ademie Fran�
aise and imposed by the Fren
h state in oÆ
ial do
uments.The 
ase with te
hnologies is similar.Standards, whether de fa
to or de jure, 
an be 
reated in di�erent ways. Some are developedby an open group of 
ompanies, universities and individuals whi
h work towards the standardunder some national, e.g., ANSI (Ameri
an National Standards Institute), or international, e.g.,ISO, standardization body. Others are developed by similar groups, though working on theframework of non-oÆ
ial organizations su
h as the W3C (World Wide Web Consortium) or theIETF (Internet Engineering Task For
e). Others still are developed by single institutions andtheir spe
i�
ation made publi
 and a

epted as de fa
to standards by the rest of the membersof the market. Often de fa
to standards are later a

epted as de jure standards by oÆ
ialstandardization bodies.In the world of multimedia, examples 
an be found in ea
h of these 
ases. The video 
odingstandards MPEG-1 and MPEG-2, and H.261 and H.263, were developed under internationalstandard organizations, viz. ISO and ITU (International Tele
ommuni
ation Union), and thusare de jure standards. The JavaTM language, on the other hand, was developed by a single
ompany, Sun Mi
rosystems, and is being a

epted qui
kly as a de fa
to standard (it has also
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been proposed to ISO to be
ome a de jure standard). The Web standards, su
h as HTTP andHTML, are being developed in the framework of the IETF and W3C non-oÆ
ial organizations.Convergen
e 
an also be found in the world of standards: the MPEG (Moving Pi
ture ExpertsGroup) 
ommunity, traditionally video-oriented, and the WWW 
ommunity, more multimediaoriented, are 
onverging. The MPEG 
ommunity is �nalizing the �rst version of MPEG-4.MPEG-4 version 1 will be mu
h more than video and audio 
oding with a multiplexing layer,as MPEG-1 and MPEG-2 were: MPEG-4 will standardize audio-visual 3D s
ene des
riptionmethods, by in
lusion of the ISO/IEC 14772 VRML (Virtual Reality Modeling Language)standard. The WWW 
ommunity, on the other hand, is issuing do
uments, whi
h will probablybe
ome de fa
to standards, that address similar subje
ts: PNG (Portable Network Graphi
s)for en
oding of still images, support of VRML for 3D virtual worlds (whi
h in
ludes videonodes), and SMIL (Syn
hronized Multimedia Integration Language) for syn
hronizing di�erentmultimedia obje
ts in a single presentation. More than a 
onvergen
e, what is being witnessedis an overlap, a 
ompetition. The future will tell whether the minimalist, text-based, W3Cand IETF standards or the overwhelming MPEG standards will win. Market does not always
hoose the best te
hnology: often timing, as mentioned before, is the 
riti
al fa
tor.
2.5.1 Standardization 
hallengesNowadays standardization of multimedia 
ommuni
ations fa
es several 
hallenges. Di�erentte
hnologies (some of them standards), by di�erent organizations, will address distin
t subsetsof the 
hallenges listed below:
ContentInteresting 
ontents will soon in
lude 
omplex 3D s
enes, 
ontaining a mixture of syntheti
and natural dynami
 obje
ts, whi
h 
an be manipulated by the end user. Who will providethis type of information or 
ontent? How? I.e., using what tools?BandwidthNetwork bandwidth and mass storage 
apa
ities both 
ontinue to grow exponentially.Even in the unlikely event that they will 
ontinue to in
rease exponentially forever, \te
h-nologi
al malthusianism" tells us that the bandwidth/
apa
ity will never be enough, sin
e
ontent will always grow at a faster pa
e. Hen
e, there will always be money to be gained,or spared, through 
ompression of the multimedia data transmitted or stored.The issue of 
ompression has typi
ally been mu
h more of a 
on
ern for the video ratherthan the multimedia people. A number of standards, aiming at di�erent appli
ations, havebeen developed for the 
ompression of video and still images: H.261 and H.263, MPEG-1,MPEG-2, MPEG-4 (soon to be born), and ISO/IEC JPEG (Joint Photographi
 ExpertsGroup). From the multimedia world, less 
on
erned, unfortunately, with bandwidth waste,little more than the W3C PNG exists today.A

essHow should the information be stored/transmitted to be easily a

essible, and hen
emanipulated? This is a subje
t in whi
h the multimedia people ex
el, but the video
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ommunity has only re
ently started to address in a thorough way, in MPEG-4. There aregood reasons for the late 
onvergen
e: 
ompression and easy a

ess are quite in
ompatible,and for some time bandwidth was more important than intera
tivity. The balan
e is likelyto 
hange.Classi�
ationThe Web is a huge, distributed database, whose size tends to in
rease exponentially. How
an users navigate through this apparent 
haos in a useful way? How 
an multimediainformation su
h as text, 2D (Two-dimensional) pi
tures, 2D drawings, 2D videos, sound
lips, movies, TV programs, 3D obje
ts, and mixtures thereof, be indexed, sear
hed, andretrieved in a meaningful way? Will the indexing, or 
lassi�
ation, be done automati
ally?This is an issue whi
h is being simultaneously addressed by W3C and MPEG, throughthe re
ently born MPEG-7 e�ort. W3C is working on Metadata, or information aboutinformation, while MPEG-7 aims at standardizing multimedia indexing methods.Rights prote
tionProviders of interesting 
ontent, individual authors or 
ompanies, will be interested ingetting paid. How 
an IPR (Intelle
tual Property Rights) be prote
ted on the Web?What will the network e
onomi
s be like? How will IPR information be in
luded onmultimedia obje
ts?A

ess 
ontrol and ratingShould all information on the Web be available to all? Who should 
ontrol? How to
ontrol? How to rate information? How to 
ipher sensitive information?W3C has addressed this question through a type of Metadata 
alled PICS (Platform forInternet Content Sele
tion), whi
h aims at standardizing the method of in
luding ratinginformation (labels) into Web 
ontent.TrustIs the information available on the Web trustworthy? How to as
ertain its real origin?How 
an information be 
erti�ed? How 
an one assure that a signature 
erti�es a givenpie
e of information and that this information has not 
hanged in any way?W3C is also working on DSig (Digital Signatures), and there are some CEC (EuropeanCommunity Commission) funded proje
ts working on watermarking of visual information.InterworkingHow to avoid needless dupli
ation of hardware/software needed to a

ess information ofthe same type stored in di�erent formats? This is the basi
 obje
tive of standardizatione�orts.EvolutionHow to produ
e standards that en
ourage, rather than prevent, 
ompetition and te
hni
alevolution?MPEG-4 had the provision for evolution as one of its obje
tives. However, due to timingproblems, MPEG-4 was divided into two phases. Phase 1, whi
h is s
heduled for thelate 1998, will not provide for mu
h evolution. Only phase 2 will in
lude provision forprogrammable terminals, and hen
e allow, or even en
ourage, evolution.
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2.5.2 Evolution of visual 
oding standardsSe
tion 2.4.1 presented the various measures whi
h 
an be used to 
onstru
t the 
ost fun
tionalthat video 
oders minimize (or at least attempt to minimize). Most of them have been used inone form or another by en
oders 
ompliant with the available video 
oding standards. However,easiness of a

ess to 
ontent was �rst 
onsidered only in MPEG-1 and MPEG-2, in the formof provision for qui
k a

ess to an
hor images. These images, known as I images (I of Intra),are independently en
oded and spread evenly in time, thus allowing the so-
alled tri
k modesof video re
orders: fast-forward, ba
ktra
k, et
. This allowed only for a rather terse a

ess to
ontent. It was only MPEG-4 whi
h started to 
onsider a more useful form of 
ontent, obje
ts,and whi
h provided means for expressing 
omplex 3D audio-visual s
enes with mixtures of2D and 3D obje
ts, natural or syntheti
. The real revolution was from MPEG-2 to MPEG-4. MPEG-2 was essentially a revamped version of MPEG-1, using the same basi
 tools, butallowing for in
reased resolution [95℄: HDTV (High De�nition Television) required it. Truebreakthroughs in the video 
oding area have been quite rare. Most of the tools used by en
oders
ompliant to MPEG standards, even MPEG-4, are small variants, however well-engineered,of tools developed de
ades ago [149℄, e.g., DCT and blo
k mat
hing motion 
ompensation.However, the integral of all the in
remental hardware and software te
hnology advan
es overthe last de
ades 
orresponds to an impressive evolution.
2.5.3 Consequen
es of standardizationStandards don't spe
ify en
oders: they spe
ify a bit stream syntax and a de
oder. Hen
e, theyimpli
itly de�ne a model for the stru
tural data to be en
oded. In this sense, video 
odingstandards 
an also be 
lassi�ed as belonging to one of the three generations presented before.In a slightly more formal way, let B be the spa
e of bit streams 
ompliant with a given standard.Let E be the spa
e of the en
oders 
ompliant with the same standard. Then, a given en
odere(�), in the broad sense, is a fun
tion from the spa
e R, of s
ene representation, to B, i.e.,e(�) : R ! B. Spa
e E is thus 
learly limited by the nature of B. Standards spe
ify de
oders,that is, they spe
ify a fun
tion d(�) from B ba
k to R. Typi
ally, spa
e E, though restri
tedby the nature of B, is very large. Even if one restri
ts it to the spa
e of 
ompliant en
odersproviding appropriate re
onstru
tion, that is, su
h that d(e(�)) is approximately the identity,the spa
e is too large.One 
an pose the en
oding problem mathemati
ally, though the 
omplexity of the solutionusually leads to heuristi
 solutions: how to en
ode a given s
ene representation r? This question
an be answered by �nding argminb2B z(d(b); r), where z is a distortion measure. However,this in
ludes only a distortion, or quality, measure. One may be interested in minimizing othermeasures. The generi
 problem is to �nd a generi
 en
oder, i.e., an en
oder leading to goodde
oding. A possibility is to �nd argmine2E maxr2R z(d(e(r)); r).Whatever the approa
h taken, heuristi
 or optimizing, it is 
lear that standards introdu
erestri
tions into the spa
e of possible en
oders. It also 
lear that they also leave a lot of roomfor 
ompetition, espe
ially if error resilien
e is taken into a

ount when designing en
oders.Also, standards do de�ne a de
oder, but a de
oder whi
h operates only with error free en
oded
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data. The design of de
oders with good error 
on
ealment strategies and the design of en
odersproviding for good error resilien
e at the de
oder is open to 
ompetition.
2.5.4 Standards and generationsStandards 
an be 
lassi�ed as �rst-, se
ond- or third- generation, a

ording to the 
hara
terof the 
ompliant en
oders. However, nothing prevents the building of a se
ond generationen
oder (i.e., an en
oder using mid-level analysis) whi
h generates bit streams 
ompliant with�rst-generation standards. For instan
e, MPEG-1 and MPEG-2 belong 
learly to the �rstgeneration, while MPEG-4, whi
h requires more sophisti
ated analysis tools but still uses a
lassi
al approa
h to en
ode the texture of the obje
ts, 
an be said to be a step towards se
ond-generation standards. A
tually, this has been the typi
al road of evolution, as some of the workin this thesis demonstrates. When tools aimed at being used in one of these transition en
odersare developed, one may 
lassify them as belonging to transitions between generations.
2.6 Analysis and 
oding tools
Figure 2.2 shows the analysis, pre-pro
essing and 
oding tools proposed or dis
ussed in thisthesis. The �gure 
lassi�es these tools into the three generations, with two transition layersadded. The tools are also listed below, together with pointers to the se
tions where they aredes
ribed:� Analysis tools:{ Transition to se
ond-generation:1. Knowledge-based segmentation [123, 125, 124℄ (Se
tion 4.4).2. Camera movement estimation [129, 127, 130, 128, 113, 122℄ (Se
tion 5.3).{ Se
ond-generation:1. RSST segmentation [32, 33℄ (Se
tion 4.5).2. TR-RSST (Time-Re
ursive RSST) segmentation [119℄ (Se
tion 4.7).{ Transition to third-generation:1. RSST with human supervision [33℄ (Se
tion 4.6).� Pre-pro
essing tools:{ Transition to se
ond-generation:1. Image stabilization [127, 130, 128, 113, 122℄ (Se
tion 5.5).� Coding tools:{ Transition to se
ond-generation:1. Camera movement 
ompensation for improved predi
tion [129, 127, 130, 128,113, 122℄ (Se
tion 6.1).
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{ Se
ond-generation:1. Shape 
oding: a taxonomy and an overview of 
oding te
hniques [120, 121℄ (Se
-tions 6.2 and 6.3), parametri
 
urve 
oding tools [116, 114, 79, 78℄ (Se
tion 6.4).
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Chapter 3
Graph theoreti
 foundations forimage analysis

N~ao devemos nun
a pro
urar ser mais pre
isose exa
tos do que o problema em 
ausa requer.Karl Popper
This 
hapter de�nes the main 
on
epts used throughout this thesis. It is divided into se
tionsdealing with images, image latti
es, image graphs, et
. Con
epts are introdu
ed, wheneverpossible, in a bottom-up manner: 
on
epts are de�ned by using previously de�ned 
on
epts.Often the eÆ
ien
y of algorithms known to solve problems related to the de�nitions given hereis dis
ussed: the usual O(�) notation of algorithmi
s is used [28℄.
3.1 Color per
eption
There are two types of light sensor 
ells in the retina: rods and 
ones. Rods are used for night(s
otopi
) vision, while 
ones are used for daylight (photopi
) vision. Both are known to beused in twilight (mesopi
) vision.Rods greatly outnumber 
ones. However, the distribution of the rod 
ells is su
h that itsdensity is nearly zero in the fovea, that is, the zone on the retina 
orresponding to the 
enterof attention. In this zone 
ones are densely pa
ked.1 Rods are mu
h more sensitive to lightthan 
ones: a single quantum is known to be suÆ
ient to ex
ite a rod. The di�erent densitydistribution of rods and 
ones seems to be an evolutionary 
ompromise between a

ura
y of1A simple experiment 
on�rms the absen
e of rods in the fovea. Look dire
tly at a dim star and then lookslightly to its side: its apparent lightness will in
rease.23
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vision (fundamental during daytime) and ability to dete
t threats (fundamental during dusk).While rods are sensitive to a wide range of light frequen
ies, they all have the same type ofresponse, hen
e s
otopi
 vision is essentially \bla
k and white": 
olors are not dis
riminated.Cones, on the other hand, are really three di�erent types of 
ells with di�erent frequen
yresponses. One type of 
ones, say \red" 
ones, is espe
ially sensitive to frequen
ies around purered, another, \green" 
ones, to frequen
ies around pure green, and the last, \blue" 
ones, tofrequen
ies around pure blue, where \pure" means 
onsisting of single frequen
y. The overallresponse of the 
ones spans the visible light spe
trum. However, the maximum sensitivity ofthe 
ombined a
tion of 
ones o

urs at a slightly higher wavelength (towards red) than that ofrods (towards blue): it is the so-
alled Purkinje wavelength shift. This seems to be related tothe fa
t that during twilight light is more bluish than during daytime, sin
e it is mostly indire
tlight di�ra
ted by the atmosphere parti
les.In the framework of image 
ommuni
ations and multimedia, photopi
 (daytime) vision is therule, so that the response of rods 
an be mostly ignored. The response of 
ones 
an be modeledas a nonlinear fun
tion of the inner produ
t of a spe
tral sensitivity fun
tion, whi
h is a 
har-a
teristi
 of the given type of sensor 
ell in a Standard Observer, and the power spe
trum ofthe light attaining the sensors (see for instan
e [189℄). \Red", \green", and \blue" 
ones havedi�erent spe
tral sensitivity fun
tions whi
h partially overlap in frequen
y.Further information on 
olor per
eption may be found in [164, 1, 27℄.
3.1.1 Color spa
esColor reprodu
tion uses the fa
t that the HVS has only three types of 
ones. In order for twolight sour
es to be per
eived as having equal 
olor it is not ne
essary for their power spe
trato be equal: they only have to produ
e the same response for ea
h of the three types of 
ones.Hen
e, most image data is available in a three 
omponent format.Color data is often presented in a CRT (Cathode-Ray Tube). Sin
e the power emitted by su
hs
reens is typi
ally proportional to a (arithmeti
) power of the input voltage (the exponent beingthe so-
alled gamma value), 
ameras are usually designed to perform gamma 
orre
tion. The
orre
tion spe
i�ed by ITU-R (ITU Radio
ommuni
ation Se
tor)2 Re
ommendation BT.709-2 [80℄ follows

I 0 = (4:5I if 0 � I � 0:018, and1:099I0:45 � 0:099 if 0:018 < I � 1, (3.1)
whi
h is the inverse of the ideal monitor power fun
tion

I = 8<: I04:5 if 0 � I 0 � 0:081, and� I0+0:0991:099 � 10:45 if 0:081 < I 0 � 1,2Formerly CCIR (Comit�e Consultatif Internationale des Radio Communi
ations).
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where I is the light intensity and I 0 is the video signal, both linearly s
aled so that they spanthe interval from zero to one (for the intensity range of interest).It should be noted that the response of the HVS to intensity is approximately the inverse of thetypi
al CRT nonlinearity [164℄. Hen
e, sin
e image analysis attempts to emulate the HVS, thenonlinear version of the 
olor signals at the output of gamma 
orre
ted 
ameras 
an and shouldbe used dire
tly.
RGBThe power spe
trum of the light input into the 
amera at ea
h point in the image is transformed,by three di�erent sensors, into a trio of values. The transformation 
an be modeled again asthe inner produ
t of the sensor spe
tral sensitivity fun
tion (whi
h 
an a
tually depend on aset of �lters) by the in
ident power spe
trum. These three values, with appropriate sensorsand possibly after a linear transformation, are R, G and B (for red, green, and blue): thelinear RGB (Red, Green, and Blue) 
olor spa
e, where ea
h value is linearly s
aled to span theinterval from zero to one. Ea
h of the three linear RGB signals then undergoes the gamma
orre
tion nonlinear transformation in equation (3.1). The resulting 
olor spa
e is nonlinearRGB, or R0G0B0, where the prime stands for nonlinear.DigitalRGB video usually deals with a digitized version of the R0G0B0 
olor spa
e. Sin
e R0G0B0has an analog unity ex
ursion for ea
h 
omponent, appropriate s
aling and quantization mustbe used. A

ording to the ITU-R Re
ommendation BT.601-2 [20℄, the R0G0B0 digital video
olor spa
e 
omponents take integer values between 16 and 235 (ex
ursion of 219), and thus are
odable with eight bits, R0219 = round(219R0) + 16;G0219 = round(219G0) + 16, andB0219 = round(219B0) + 16:
This 
olor spa
e will hen
eforth be known as R0G0B0219.In digital 
omputers, however, an ex
ursion of 255 is often used, resulting in the R0G0B0255
olor spa
e, whi
h leads to smaller quantization errorsR0255 = round(255R0);G0255 = round(255G0), andB0255 = round(255B0):
Y 0CBCRLuma is a signal whi
h is related to brightness, and whi
h is usually, though wrongly, referredto as luminan
e. Luminan
e, Y , is de�ned by CIE (Commission Internationale de l'�E
lairage)
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as radiant power weighted by a spe
tral sensitivity fun
tion that is 
hara
teristi
 of vision [164℄.It 
an be expressed as a weighted sum of the linear RGB 
omponents. Luma, Y 0, on the otherhand, is a weighted sum of the non-linear, gamma 
orre
ted, R0G0B0
omponents. Hen
e, Y 0
annot be obtained from Y by gamma 
orre
tion, as in (3.1).In order to save bandwidth or storage spa
e, video data is often provided in a format in whi
h
olor is subsampled relative to luma. This owes to the fa
t that the HVS is less sensitiveto spatial detail in 
olor than in brightness. The 
orresponding 
olor spa
e separates 
olorinformation from luma by subtra
ting luma from the R' and B' signals. The 
olor signals,known as CB and CR, are then obtained by s
aling, o�setting and quantizing. This 
olorspa
e, known as Y 0CBCR, and the sampling format, are spe
i�ed in ITU-R Re
ommendationBT.601-2 [20℄. The 
omponents of Y 0CBCR 
an be 
omputed from R0G0B0 byY 0 = round(16 + 65:481R0 + 128:553G0 + 24:966B0);C 0B = round(128� 37:797R0 � 74:203G0 + 112:000B0), andC 0R = round(128 + 112:000R0 � 93:786G0 � 18:214B0);
where Y 0 has an ex
ursion from 16 to 235, and CB and CR have and ex
ursion from 16 to 240(with zero 
orresponding to level 128). Y 0 is usually known as the luma signal, and CB and CRare known as the 
hroma signals.
3.2 Images and sequen
es
3.2.1 Analog imagesDe�nition 3.1. ([still℄ analog image) A 2D fun
tion f(�) : R ! R n de�ned in a boundedregionR � R 2 and taking values in R n . It is assumed that the 
oordinate sx in s = �sx sy� 2 R 2grows rightwards and the 
oordinate sy grows upwards.
A still image usually 
orresponds to the proje
tion of a 3D s
ene onto a 2D plane (e.g., theproje
tion plane of a 
amera) at a given time instant.3 The dimension n of the spa
e where thefun
tion takes values is the number of 
olor 
omponents of the 
olor spa
e used. Usual valuesof n are n = 3 for RGB, R0G0B0, or any other 
olor spa
es adapted to the tri
hromati
 HVS,and n = 1 for grey s
ale images.When time is allowed to 
ow, the previous de�nition must be extended to en
ompass movingimages:De�nition 3.2. (moving analog image) A 3D fun
tion f(�) : R � T ! R n de�ned in atime interval T � R and in a bounded spa
e region R � R 2 .3A
tually, besides being the result of an integration over a short period of time, it is not a true proje
tion,sin
e the image is formed through a lens, and there is the question of fo
using to 
onsider.
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3.2.2 Digital imagesStill or moving analog images must be sampled and quantized, i.e., digitized, before they 
anbe manipulated by digital 
omputers. The result of sampling and quantizing is a digital image:De�nition 3.3. (image) A 2D fun
tion f [�℄ : Z ! Zn de�ned in a bounded dis
rete spa
eregion Z � Z2 and taking values in Zn (quantized 
omponent spa
e).De�nition 3.4. (moving image or video [or image℄ sequen
e) A 3D fun
tion f [�℄ :N� Z ! Zn de�ned in a dis
rete time interval N � Z and in a bounded dis
rete spa
e regionZ � Z2 .De�nition 3.5. (pixel) Ea
h of the elements of v = �vi vj� 2 Z in the domain of a digitalimage. The name \pixel" stems from \pi
ture element".
In the 
ase of moving images, pixels are extended with a, often impli
it, time 
oordinate in thedis
rete time domain N of the image. Those 3D pixels are also known as voxels (from \volumeelement").There is a spe
ial 
lass of digital image or moving image whi
h is often of interest: binary orbla
k and white images. These images take values on a set with only two values, whi
h 
an beinteger values (usually 0 and 1, but often 0 and 255, for eight bits 
oding), or, for instan
e, theboolean values \false" and \true".
3.2.3 Latti
es, sampling latti
es and aspe
t ratioUsually analog images are periodi
ally sampled in spa
e and time. The set of sample positionsde�nes a sampling pattern, normally in the form of a latti
e (a sampling latti
e):De�nition 3.6. (latti
e [181℄) Let uj, with j = 0; : : : ;m, be a set of linearly independentve
tors in Rm (the latti
e basis). The set of sites s 2 Rm su
h that s = s[v℄ =Pm�1j=0 vjuj, withv = �v0 : : : vm�1� 2 Zm , is a latti
e L in Rm .
A digital image f [�℄ 
an be obtained by sampling and quantizing an analog image f(�) a

ordingto a 2D sampling latti
e f [v℄ = q� ~f(s[v℄)� with v 2 Z,where ~f(�) is an anti-aliased, �ltered version of the analog original f(�), and q(�) : R n ! Zn isa quantization fun
tion. Noti
e that anti-alias �ltering and quantization are usually performedindependently on ea
h 
olor 
omponent.Similarly, a digital sequen
e f [�℄ 
an be obtained by sampling and quantizing an analog sequen
ef(�) a

ording to a 3D sampling latti
efn[v℄ = f [n; v℄ = q� ~f(s[n; v℄; t[n; v℄)� with n 2 N and v 2 Z,
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where ~f(�) is an anti-aliased, �ltered version of the analog original f(�), and q(�) : R n ! Zn is aquantization fun
tion. Noti
e that usually the anti-aliasing �lter is separable between the spa
eand time dimensions.Hen
e, a sampling latti
e relates the pixels with the 
orresponding positions in the original,analog image.
Usual 2D sampling latti
es
The most 
ommon 2D sampling latti
es are the re
tangular, generated by u0 = �0 �b�T andu1 = �a 0�T (square when a = b), and the hexagonal, generated by u0 = �a=2 �ap3=2�T andu1 = �a 0�T , as 
an be seen in Figure 3.1. The names for these latti
es stem from the shape ofthe regions in a Voronoi tessellation 
orresponding to the latti
e sites.4 Often the term pixel isapplied to these regions, instead of to the 
oordinates of the latti
e sites. The meaning shouldbe 
lear from the 
ontext. Noti
e that the latti
e ve
tors invert the meanings of x and y (inthe 
ase of the re
tangular latti
e) and invert the dire
tion of the y axis. This is to maintainthe usual 
onvention of thinking of a digital image f as a matrix with elements f [i; j℄, where igrows downwards and j rightwards.

u0
u1

(a) Re
tangular latti
e.

u1
u0

(b) Hexagonal latti
e
Figure 3.1: Examples of 2D latti
es (u0 and u1 are the latti
e basis ve
tors). Latti
e sites arerepresented by dots.In the 
ase of re
tangular latti
es, � = a=b is the pixel aspe
t ratio. Even though the pixelaspe
t ratio rarely has the value 1 (
orresponding to square pixels), this fa
t is often negle
ted.For instan
e, the soon to be issued MPEG-4 standard, the �rst in the MPEG family to spe
ifya s
ene stru
ture, and hen
e to mix video with 
omputer graphi
s obje
ts, seems to have4Given a set of sites in spa
e, the Voronoi tessellation surrounds ea
h site with a region of in
uen
e 
orre-sponding to those points of the spa
e whi
h are 
loser to the given site than to any other site. If the spa
e is R2and the number of sites is �nite (a suÆ
ient, though not ne
essary, 
ondition), the Voronoi tessellation will havepolygonal, possibly unbounded regions. The dual 
on
ept is the Delaunay triangulation.
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negle
ted this issue, at least in its �rst version.5 The result is distorted renderings of videomaterial whenever � 6= 1.A single latti
e 
an be generated by di�erent bases. The bases 
orresponding to the smallestpossible ve
tors are said to be redu
ed [69℄. The bases presented above for the re
tangular andhexagonal latti
es in R 2 are redu
ed.
Usual 3D sampling latti
esIn pra
ti
e there are two sampling latti
es used for moving, 3D images: progressive (or re
tangu-lar) and interla
ed. The progressive latti
e is generated by u0 = �0 0 ��T , u1 = �0 �b 0�Tand u2 = �a 0 0�T (spatially square when a = b). The interla
ed latti
e is generated byu0 = �0 �b=2 ��T , u1 = �0 �b 0�T and u2 = �a 0 0�T (spatially square when a = b).In both 
ases � is the sampling time period. The interla
ed s
anning used in analog 
amerasintrodu
es a time delay between the �rst and the last lines in a �eld. The digitized version ofan analog interla
ed signal thus has a more 
omplex stru
ture than the one presented here.Noti
e that the latti
e ve
tors, in the 
ase of the re
tangular latti
e, again invert the meaningsof x, y, and now also z (time), and invert the dire
tion of the y axis. This is to maintain theusual 
onvention of thinking of a digital moving image f as a sequen
e fn, with n 2 N, ofmatri
es with elements fn[i; j℄, where i grows downwards and j rightwards. Using the notationabove, fn[i; j℄ = f [n; i; j℄.This notation is usually violated in the 
ase of interla
ed 3D latti
es. This is be
ause the spatialdomain of moving analog images is usually a re
tangle in a �xed lo
ation. Hen
e, it is 
ommonto 
hange the meaning of i in the notation fn[i; j℄ into: The number of the row, assuming thatat ea
h time instant row zero is the �rst row inside the given re
tangular spatial domain.In this thesis all moving images are assumed to have been sampled using a progressive latti
e.Methods for 
onverting digital images from interla
ed to progressive sampling latti
es are easily
onstru
ted, but outside the s
ope of this thesis.
3.3 Grids, graphs, and trees
This se
tion presents some de�nitions and results regarding grids and graphs. Sin
e some ofthe material on graphs 
an be found in good monographes on graph theory, su
h as [186℄,several results are presented informally and without proof. A good referen
e for engineeringappli
ations of graph theory is [23℄.De�nition 3.7. (grid [181℄) A grid G(V;E) in Zm is de�ned by two sets:

1. V � Zm { the set of verti
es.5A
tually the aspe
t ratio 
an now be spe
i�ed in the VOL (Video Obje
t Layer). A fortunate last-minuteaddition to the standard.
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2. E { a set of unordered pairs of points fva; vbg with va 6= vb 2 V, i.e., a neighborhoodsystem or the set of the edges in the grid.su
h that (see [181℄ for further details):1. the sets V and E are invariant with respe
t to some sub-group t of translations in Zm(t-invarian
e 
ondition).2. the edges (elements of E) do not 
ross (non-
rossing 
ondition).Figure 3.2 shows a s
hemati
 representation of the usual square and hexagonal grids in Z2 , bothwith V = Z2 . The names for the grids are related to the number of neighbors of ea
h vertex.The geometri
al representation with squares is a mere matter of 
onvenien
e.

(a) Re
tangular grid. (b) Hexagonal grid.
Figure 3.2: Examples of grids. Verti
es are represented by dots and edges by lines.A grid 
an be seen as a simple graph. Additionally, be
ause of the non-
rossing 
ondition, gridsin Z2 
an be seen as planar simple graphs. Edges in grids 
orrespond to ar
s in graphs.De�nition 3.8. (simple graph [172℄) A simple (undire
ted) graph G(V;A) 
onsists of anonempty set V of verti
es and a set A of unordered pairs of distin
t elements of V 
alled ar
s.Sin
e A is a set, there are no repeated ar
s. Sin
e the ar
s 
onsist of unordered pairs of distin
telements, no ar
 
onne
ts a vertex to itself.Often it may be important to allow the existen
e of multiple or parallel ar
s. Sin
e simplegraphs disallow them, a more generi
 de�nition may be needed:De�nition 3.9. (multigraph [172℄) A multigraph G(V;A) 
onsists of a nonempty set V ofverti
es, a set A of ar
s, and an ar
 fun
tion g(�) : A ! �fu; vg : u 6= v 2 V	. Two ar
s a1and a2 are multiple or parallel if g(a1) = g(a2). Hen
e, if g(�) is inje
tive, then the multigraphhas no parallel ar
s, and hen
e is a simple graph. By a slight abuse of notation, fu; vg 2 A willbe taken to mean 9a 2 A : g(a) = fu; vg.Still another generalization allows the existen
e of ar
s 
onne
ting a vertex to itself:
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De�nition 3.10. (pseudograph [172℄) A pseudograph G(V;A) 
onsists of a nonempty setV of verti
es, a set A of ar
s, and an ar
 fun
tion g(�) : A ! �fu; vg : u; v 2 V	. Thepseudograph 
an thus 
ontain ar
s a su
h that g(a) = fug, i.e., ar
s between a vertex and itself.A pseudograph without su
h self-
onne
ting ar
s is, of 
ourse, a multigraph.
Properties whi
h are true for pseudographs are also true for multigraphs. And properties whi
hare true for multigraphs are also true for simple graphs. Hen
e, throughout this thesis, the wordgraph will be taken to mean pseudograph unless it is quali�ed with \multi-" or \simple". Forsimple graphs, the fun
tion g(�), whi
h is inje
tive, is also taken to exist.De�nition 3.11. (simpli�
ation) The pro
ess of su

essively eliminating (or merging) mul-tiple ar
s from a multigraph until a simple graph is obtained. In the 
ase of pseudograph, thispro
ess is pre
eded by the elimination of self-
onne
ting ar
s. Hen
e, simpli�
ation 
onverts apseudo- or multigraph into a simple graph.De�nition 3.12. (planar graph [172℄) A graph is planar if it 
an be drawn in the planewithout 
rossing ar
s.
A multigraph is planar if its simpli�
ation is planar. The same is true for a pseudograph. Planargraphs are espe
ially important for image pro
essing. Hen
e, results 
on
erning planar graphsare given in a separate se
tion.De�nition 3.13. (vertex adja
en
y or neighborhood and degree [172℄) Two verti
esu; v 2 V of a graph G(V;A) are 
alled adja
ent or neighbor verti
es if there is an ar
 a su
hthat g(a) = fu; vg 2 A. In that 
ase, a is said be in
ident with (or to 
onne
t) verti
es u and v,and u and v are 
alled the end verti
es of a. The degree d(v) of a vertex v is simply the numberof ar
s in
ident with it. The degree d(u; v) of a pair of verti
es u and v is the number of ar
sin
ident on both verti
es, i.e., d(u; v) = #�a 2 A : g(a) = fu; vg	.6
Hen
e, d(u; v) is either zero or one in a simple graph and d(u; u) is always zero on multi- orsimple graphs, i.e., on graphs without self-
onne
ting ar
s. Also, the relations d(u; v) � d(u)and d(u; v) � d(v) always hold. Additionally, it 
an be easily proven that Pv2V d(v) = 2#Afor any simple, multi-, or pseudograph.
3.3.1 Graph operationsBasi
 graph operationsGiven a graph G(V;A), then:
� If a 2 A, then G � a means the graph G(V;A n fag).� If a is su
h that g(a) = fu; vg with u; v 2 V, then G + a means the graph G(V;A [ fag).6#S is the number of elements, i.e., the 
ardinality, of the set S.
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� If v 2 V, then G � v means the graph G(V n fvg;A nA0), where A0 = �a 2 A : v 2 g(a)	,the set of ar
s in
ident on v.� G + v means the graph G(V [ fvg;A).

Subdivisions, mergings, short-
ir
uits, and redu
tionsDe�nition 3.14. (ar
 subdivision [172℄) A transformation of graph G(V;A) to graphG0(V0;A0) 
onsisting in removing an ar
 a 2 A in
ident on u; v 2 V and inserting a newvertex w and two ar
s b and 
 su
h that g(b) = fu;wg and g(
) = fv; wg. That is, the pro
essof dividing an ar
 into a sequen
e of two ar
s. The resulting graph has A0 = Anfag[f
g[fdgand V0 = V [ fwg.De�nition 3.15. (ar
 
ontra
tion or merging of adja
ent verti
es [186℄) A transforma-tion of a graph G(V;A) to a graph G0(V0;A0) su
h that an ar
 a with g(a) = fu; vg is removedand the two adja
ent verti
es u; v 2 V (whi
h may be the same vertex) are repla
ed by a singlenew vertex w 2 V0. Ar
s with end verti
es u or v are 
hanged so that they are in
ident on w.
In the 
ase of multi- or simple graphs, all ar
s a su
h that g(a) = fu; vg are removed in thetransformation, for otherwise self-
onne
ting ar
s would be introdu
ed. In the 
ase of simplegraphs, pairs of ar
s between some vertex x 6= u; v 2 V and u and v are merged into a singlear
, so that no multiple ar
s are introdu
ed.A related 
on
ept is that of short-
ir
uiting:De�nition 3.16. (vertex short-
ir
uiting) A transformation of a graph G(V;A) to a graphG0(V0;A0) su
h that two arbitrary verti
es u; v 2 V are repla
ed by a new vertex w 2 V0. Ar
swith end verti
es u or v are 
hanged so that they are in
ident on w.
The same 
onsiderations as for vertex mergings apply with respe
t to multi- and simple graphs.De�nition 3.17. (
ontra
tion) A graph G0 that 
an be obtained by a sequen
e of ar
 
on-tra
tions performed on graph G is 
alled a 
ontra
tion of G. The 
ontra
tion G0 is maximal if it
ontains no ar
s.
The inverse of an ar
 subdivision is often of interest. It will, however, be de�ned only forpseudographs, sin
e for pseudographs it does maintain the graph 
ir
uits (and hen
e is invariantwith respe
t to homeomorphism, see De�nitions 3.23 and 3.43):De�nition 3.18. (ar
 redu
tion) A transformation of graph G(V;A) to pseudographG0(V0;A0) 
onsisting in removing a vertex v 2 V with d(v) = 2 and su
h that 9a; b 2 Awith a 6= b in
ident on v. I.e., the (two) ar
s in
ident on v are not self-
onne
ting (otherwised(v) = 4). Let g(a) = fv; ug and g(b) = fv; wg (v 6= u;w, of 
ourse). The removal of v isthen followed by the removal of ar
s a and b and by the insertion of a new ar
 
 su
h thatg(
) = fu;wg (whi
h may be a self-
onne
ting ar
).
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Thus, an ar
 redu
tion 
an be seen as an ar
 
ontra
tion performed on one of the two distin
tar
s 
onne
ting to the 
hosen vertex, whi
h must be of degree two. Unlike ar
 
ontra
tions,however, it is easy to prove that ar
 redu
tions do not introdu
e nor remove 
ir
uits (seeDe�nition 3.23) from the graph.De�nition 3.19. (redu
tion) A graph G0 that 
an be obtained by a sequen
e of ar
 redu
tionsperformed on graph G is 
alled a redu
tion of G. The redu
tion G0 is maximal if no further ar
redu
tions are possible.
The verti
es that remain after the maximal redu
tion of a graph depend in general on the orderof the ar
 redu
tions. However, the resulting maximal redu
tions, while possibly di�erent, arealways isomorphi
 (see De�nition 3.42).
3.3.2 Walks, trails, paths, 
ir
uits, and 
onne
tivity in graphsDe�nition 3.20. (walk [186℄) A �nite alternating sequen
e of verti
es and ar
s v0; a1; v1; : : : ;vk�1; ak; vk, with vi 2 V for i = 0; : : : ; k and ai 2 A su
h that g(ai) = fvi�1; vig for i = 1; : : : ; k,of a graph G(V;A), is a walk of length k between its end or terminal verti
es v0 and vk (theother verti
es are internal verti
es). If v0 = vk the walk is 
losed; otherwise it is an open walk.A walk with end verti
es v0 and vk is 
alled a v0; vk-walk.De�nition 3.21. (trail [186℄) A trail is a walk with all ar
s distin
t. It is an open trail if itsend verti
es are distin
t; otherwise it is 
losed.De�nition 3.22. (path [186℄) A path is an open trail with all verti
es distin
t. A path withend verti
es v0 and vk is 
alled a v0; vk-path.
It 
an be proved easily that all open walks or trails 
ontain a path between their end verti
es.De�nition 3.23. (
ir
uit [186℄) A 
ir
uit is a 
losed trail with all verti
es distin
t ex
ept theend verti
es.
The shortest 
ir
uit in a pseudograph has length one, in a multigraph has length two, and in asimple graph has length three.Sin
e paths and 
ir
uits have no repeated ar
s or verti
es (ex
ept the end verti
es of a 
ir
uit),both 
an be spe
i�ed uniquely from their set of ar
s (in the 
ase of a 
ir
uit the terminal vertexwill remain ambiguous, though). Hen
e, if P is a path and C is a 
ir
uit, then P and C willoften be interpreted as the set of ar
s in the path and the set of ar
s in the 
ir
uit, respe
tively.It should be 
lear that all verti
es in a 
ir
uit have degree 2 on that 
ir
uit, the same thinghappening to the all verti
es in a path ex
ept the end verti
es, whi
h have degree 1. Also, eventhough paths of length zero are pre
luded by the de�nition of path, they will sometimes beof use, in whi
h 
ase they will be assumed to 
onsist of a single vertex and represented by anempty set of ar
s (in this 
ase the representation by the ar
s is not suÆ
ient, but this is rarelyproblemati
).
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A u; v-path is in general not unique in a graph. It is unique, if it exists, only in the 
ase ofa
y
li
 graphs (graph with no 
ir
uits, see below). In these 
ases of uniqueness, it makes senseto write P = u; v-path.De�nition 3.24. (
ir
uit ar
 [186℄) An ar
 a is a 
ir
uit ar
 of graph G if there is a 
ir
uitin G whi
h in
ludes a.De�nition 3.25. (
onne
tivity) Two verti
es u; v 2 V of graph G(V;A) are 
onne
ted ifthere is a u; v-path (or walk or trail) in the graph. A subset V0 of verti
es of graph G(V;A) is
onne
ted if for all pairs of verti
es u; v 2 V0 there is a u; v-path (or walk or trail) 
ontainingonly verti
es of V0. A single vertex is 
onne
ted by de�nition. A graph G(V;A) is said to be
onne
ted if V is itself 
onne
ted, i.e., if there is a path (or walk or trail) between any pair ofverti
es.
It 
an be easily proved that the removal of a 
ir
uit ar
 from a 
onne
ted graph leads to a graphwhi
h is still 
onne
ted. If there are no 
ir
uit ar
s in a graph, then the graph has no 
ir
uitsand is said to be an a
y
li
 graph.De�nition 3.26. (n-ar
-
onne
tivity) A 
onne
ted graph is n-ar
-
onne
ted if at least nar
s must be removed to dis
onne
t it.
If all ar
s in a graph are 
ir
uit ar
s, then 
learly that graph is 2-ar
-
onne
ted.De�nition 3.27. (bridge) An ar
 in a graph G is a bridge if its removal from G augmentsthe number of 
onne
ted 
omponents of G (see De�nition 3.34).
Noti
e that if a graph has a bridge, then it is 1-ar
-
onne
ted, and that the number of 
onne
ted
omponents always augments by one when a bridge is removed.
3.3.3 Euler trails and graphsDe�nition 3.28. (Euler trails) An Euler trail is a 
losed trail 
ontaining all the ar
s of agiven graph. An open Euler trail is an open trail 
ontaining all the ar
s of a given graph.De�nition 3.29. (Euler graph) A graph with all verti
es of even degree is an Euler graph.
It is known from graph theory [174℄ that a 
onne
ted graph G(V;A) has an Euler trail i� (ifand only if) 8v 2 V d(v) is even, i.e., i� it is an Euler graph. Also, it has an open Euler trail,but not a (
losed) Euler trail, i� there are exa
tly two verti
es with odd degree.Another interesting result is that Euler graphs, 
onne
ted or not, 
an be expressed, ex
ept forisolated verti
es, as the union of ar
-disjoint 
ir
uits.A more general de�nition is:De�nition 3.30. (postman walk) A postman walk is a 
losed walk 
ontaining all the ar
s ofa given graph. An open postman walk is an open walk 
ontaining all the ar
s of a given graph.
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The Chinese postman problemLet w(�) : A! R+0 be a weight fun
tion de�ned on the ar
s A of graph G(V;A). The Chinesepostman problem is then to �nd a postman walk v0; a1; v1; : : : ; vk�1; ak; vk su
h thatPki=1w(ai)is minimum (the path length k is k >= #A). Of 
ourse, if an Euler trail exists, it is also asolution of the Chinese postman problem.The Chinese postman problem is solvable in polynomial time (i.e., it is not NP-
omplete) inthe 
ase of undire
ted, simple graphs. See [186℄ and [51℄ for details.
3.3.4 Subgraphs, 
omplements, and 
onne
ted 
omponentsDe�nition 3.31. (subgraph [174℄) A graph G(V0;A0) is a subgraph of G(V;A) if V0 � Vand A0 � A. It is a proper subgraph if either V0 � V or A0 � A.The 
on
ept of maximal subgraph is also important, and will be useful for de�ning 
onne
ted
omponents:De�nition 3.32. (maximal subgraph [172℄) A subgraph G(V0;A0) of graph G(V;A) is max-imal if there is no ar
 fva; vbg 2 AnA0 su
h that va; vb 2 V0, that is, if all ar
s in A 
onne
tingverti
es of V0 also belong to A0. The maximal subgraph G(V0;A0) is said to be vertex-indu
edby V0 � V.Hen
e, ea
h subset V0 of verti
es from V indu
es a single maximal subgraph G(V0;A0) ofG(V;A), whi
h 
an be 
onstru
ted by in
luding in A0 all ar
s with both end verti
es in V0.A maximal subgraph 
an also be de�ned as a subgraph to whi
h no further ar
s of the originalgraph 
an be added without also adding some verti
es.Noti
e that a subgraph G(V0;A0) of G(V;A) may also be ar
-indu
ed by some A0 � A. Theset of verti
es V0, in this 
ase, is su
h that it 
ontains only end verti
es of ar
s in A0.De�nition 3.33. (
omplement [23℄) The 
omplement G0(V00;A00) of a subgraph G0(V0;A0)of graph G(V;A) is the subgraph ar
-indu
ed by A00 = A nA0 plus the verti
es in V nV0.Hen
e, a subgraph and its 
omplement never have 
ommon ar
s, but may have 
ommon verti
es.De�nition 3.34. (
onne
ted 
omponent) A maximal subgraph G(V0;A0) of G(V;A) is a
onne
ted 
omponent of G(V;A) if:V0 is 
onne
ted, and8fu; vg 2 A either u; v 2 V0 or u; v 2 V nV0.
AlgorithmsThe 
onne
ted 
omponents of a graph 
an be identi�ed using the DFS (Depth First Sear
h)algorithm, whose running time for a generi
 graph G(V;A) is O(#V+#A) [28℄. If the graph
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is simple and planar, then the running time is also O(#V), i.e., it is linear on the number ofverti
es, see Se
tion 3.4.1.Even though this is not appropriate to an algorithm, the number of 
onne
ted 
omponents ofa graph 
an be seen to be equal to the number of verti
es in its maximal 
ontra
tion.
3.3.5 Rank and nullityDe�nition 3.35. (rank) The rank �(G) of a graph G(V;A) is de�ned as �(G) = #V � 
,where 
 is the number of 
onne
ted 
omponents of G.De�nition 3.36. (nullity) The nullity �(G) of a graph G(V;A) is de�ned as �(G) = #A�#V + 
 = #A� �(G), where 
 is the number of 
onne
ted 
omponents of G.
3.3.6 Cut verti
es, separability, and blo
ksDe�nition 3.37. (
ut vertex [23℄) If in a 
onne
ted graph G there is a proper subgraph G0,with at least one ar
, su
h that it has only one vertex v in 
ommon with its 
omplement G0, thenvertex v is said to be a 
ut vertex of G. A vertex of an un
onne
ted subgraph is a 
ut vertex ifit is a 
ut vertex of one of its 
onne
ted 
omponents.If the removal of a vertex and all in
ident ar
s leads to an in
rease (of at least one) in the numberof 
onne
ted 
omponents, then that vertex is a 
ut vertex. For multi- and simple graphs, the
onverse is also true. For pseudographs, verti
es whi
h are self-
onne
ted and whi
h belong toa 
onne
ted 
omponent with at least another vertex are also 
ut verti
es regardless of whethertheir removal in
reases the number of 
onne
ted 
omponents.De�nition 3.38. (separability [23℄) A dis
onne
ted graph is separable. A 
onne
ted graphis separable if it 
ontains 
ut verti
es.De�nition 3.39. (blo
k [23℄) A blo
k of graph G is a non-separable subgraph of G su
h thatadding any further ar
 will make it separable.A graph 
an always be de
omposed into its blo
ks. Noti
e that isolated verti
es (i.e., verti
eswithout in
ident ar
s, not even self-
onne
ting ar
s), are blo
ks, even though they 
annot beobtained by de
omposition of any graph into blo
ks. The blo
ks of a graph are always 2-ar
-
onne
ted, ex
ept for the trivial blo
k with two verti
es 
onne
ted by a single ar
, as 
an beproved easily.
3.3.7 Cuts and 
utsetsDe�nition 3.40. (
ut) Given two proper subsets of verti
es V1;V2 � V of a graph G(V;A)su
h that V1 [V2 = V and V1 \V2 = ;, the 
ut hV1;V2i is the set of ar
s �a 2 A : g(a) =fu; vg with u 2 V1; v 2 V2	.
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De�nition 3.41. (
utset) A minimal set of ar
s of graph G su
h that its removal in
reasesthe number of 
onne
ted 
omponents (of exa
tly one).
Hen
e, a 
ut hV1;V2i of a 
onne
ted graph G is also a 
utset if V1 and V2 are 
onne
ted. Ingeneral, it 
an be proved that 
uts are either 
utsets or unions of ar
-disjoint 
utsets.
3.3.8 Isomorphism, 2-isomorphism, and homeomorphismAn important 
on
ept, whi
h tells when two graphs 
an be seen as \equivalent", is that ofisomorphism:De�nition 3.42. (isomorphi
 graphs) Two graphs G1(V1;A1) and G2(V2;A2) are isomor-phi
 if there is a bije
tive fun
tion g(�) : V1 ! V2 su
h that d(u; v) = d(g(u); g(v)) for allu; v 2 V1.The 
on
ept of homeomorphism will be useful for de�ning a few 
on
epts related to the bordersin 2D maps:De�nition 3.43. (homeomorphi
 graphs) Two graphs G1 and G2 are homeomorphi
 if both
an be obtained by su

essive ar
 subdivisions performed on a pair of isomorphi
 originatinggraphs. Or, if the their maximal redu
tions are isomorphi
.
Finally, the 
on
ept of 2-isomorphism will be of paramount importan
e when dealing with graphduality:De�nition 3.44. (2-isomorphism [186, 23℄) Two graphs G1 and G2 are 2-isomorphi
 if they
an be made isomorphi
 to one another by performing series of the following operations on anyof them:1. De
ompose a separable graph into dis
onne
ted blo
ks and re
onne
t them su

essively byshort-
ir
uiting pairs verti
es belonging to di�erent 
onne
ted 
omponents.2. If G0 is a proper subgraph of either G1 or G2, with at least one ar
, su
h that it has onlytwo distin
t verti
es u and v in 
ommon with its 
omplement G0, de
ompose the originalgraph (G1 or G2) into G0 and G0 by splitting the verti
es u and v and then re
onne
t thesame verti
es after turning around one of the subgraphs.
Step 1 above does not introdu
e nor remove 
ir
uits from the original graph: the short-
ir
uitedverti
es thus be
ome 
ut verti
es, ex
ept if one of the 
omponents being 
onne
ted is an isolatedvertex (in whi
h 
ase it simply \disappears"). Step 2 also does not introdu
e nor remove 
ir
uitsfrom the original graph. The importan
e of these fa
ts 
an be seen from the theorem statingthat two graphs are 2-isomorphi
 i� there is a bije
tive 
orresponden
e between their sets ofar
s su
h that 
ir
uits in one graph 
orrespond to 
ir
uits in the other [186℄, though the orderof the ar
s in the 
ir
uits may be di�erent.Step 1 does not 
hange the number of ar
s in the graph, and, when a blo
k is separated bysplitting a 
ut vertex or two 
onne
ted 
omponents united by short-
ir
uiting two verti
es,
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both number of verti
es and number of 
onne
ted 
omponents either in
rease or de
rease byone. Step 2 does not 
hange the number of verti
es, ar
s and 
onne
ted 
omponents of the graph.Hen
e, neither the rank nor the nullity of the graph 
hange. As a 
onsequen
e, 2-isomorphi
graphs must have the same rank, the same nullity, and the same number of ar
s.
3.3.9 Trees and forestsTheorem 3.1. (tree) The following statements about graph T (V;A) are equivalent:1. T is a tree.2. T is 
onne
ted and a
y
li
.3. T is 
onne
ted and #A = #V � 1 = �(T ).4. There is a unique path in T between any pair of distin
t verti
es.5. Adding a new ar
 (in
ident on existing verti
es) to T will 
reate a single 
ir
uit.Theorem 3.2. (forest) The following statements about graph F(V;A) are equivalent:1. F is a forest.2. F is a
y
li
.3. If there is a path in F between a pair of distin
t verti
es, then that path is unique.4. F has 
 
onne
ted 
omponents and #A = #V � 
 = �(F).5. Adding a new ar
 (in
ident on existing verti
es) to F will either redu
e the number of
onne
ted 
omponents by one or 
reate a single 
ir
uit.Theorem 3.3. (k-tree) The following statements about graph kT (V;A) are equivalent:1. kT is a k-tree.2. kT is a forest with k 
onne
ted 
omponents (trees).3. kT is a
y
li
 and has k 
onne
ted 
omponents.4. kT has #A = #V � k = �(kT ).5. Adding a new ar
 (in
ident on existing verti
es) to kT will either redu
e the number of
onne
ted 
omponents by one or 
reate a single 
ir
uit.Ea
h 
onne
ted 
omponent of a forest or a k-tree is a tree. A forest with a single 
onne
ted
omponent is a tree. A 1-tree is a tree.If a tree T , a k-tree kT or a forest F are subgraphs of some graph G, the phrases \T is a treeof G", \kT is a k-tree of G", \F is a forest of G", will be used.For a k-tree kT (V;A), kTi(Vi;Ai), with i = 1; : : : ; k, refer to ea
h of its 
omposing trees(
onne
ted 
omponents). Obviously, [ki=1Vi = V while Vi\Vj = ; for i 6= j, and [ki=1Ai = Awhile Ai \Aj = ; for i 6= j.
Spanning trees and forestsDe�nition 3.45. (spanning tree) A subgraph T (V0;A0) of simple graph G(V;A) is a span-ning tree of G if T is a tree and it 
overs G, i.e., V0 = V.
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A 
onne
ted graph G(V;A) 
an be 
overed by a spanning tree T (V;A0) with #A0 = #V�1 =�(G). The 
onverse is true: if T (V;A0) is a tree whi
h is a subgraph of G(V;A), then T is aspanning tree i� #A0 = #V � 1 = �(G).De�nition 3.46. (spanning forest) Let G be a graph with 
 
onne
ted 
omponents. Let Fbe a forest whi
h is also a subgraph of G. If F 
onsists of a union of spanning trees for all the
 
onne
ted 
omponents of G, then F is a spanning forest of G.
A spanning forest of a 
onne
ted graph is a spanning tree. All spanning forests F(V;A0) ofa graph G(V;A) with 
 
onne
ted 
omponents have #A0 = #V � 
 = �(G). The 
onverse isalso true: if F(V;A0) is a forest whi
h is a subgraph of G(V;A), then F is a spanning foresti� #A0 = #V � 
 = �(G), where 
 is the number of 
onne
ted 
omponents of G.De�nition 3.47. (
ospanning forest and tree) Let F(V;A0) be a spanning forest of graphG(V;A). Then the subgraph F 0(V;A nA0) will be 
alled the 
ospanning forest of forest F . IfG is 
onne
ted, F is really a spanning tree and F 0 will be 
alled its 
ospanning tree.
Bran
hes and 
hordsDe�nition 3.48. (bran
h and 
hord) The ar
s in a spanning forest are 
alled bran
hes ofthe spanning forest. The ar
s in the 
orresponding 
ospanning forest are 
alled 
hords of thespanning forest.
Noti
e that self-
onne
ting ar
s 
annot be part of any spanning forest. Hen
e, self-
onne
tingar
s are always 
hords. Also noti
e that bridges must be part of all spanning forests, and hen
ethey are always bran
hes.
Fundamental 
ir
uits and 
utsetsSpanning trees have some interesting properties. For instan
e, removing a bran
h from a span-ning tree results in two 
onne
ted 
omponents (ea
h one a tree on its own), i.e., every bran
his a 
utset of the tree (trees are 1-ar
-
onne
ted). The set of ar
s in the original graph with oneend vertex in ea
h of these two 
omponents is a fundamental 
utset of the graph:De�nition 3.49. (fundamental 
utset) Let V1 and V2 be the two sets of (
onne
ted) ver-ti
es obtained by removing bran
h a from the spanning tree T of graph G. The 
utset hV1;V2iin G is 
alled a fundamental 
utset of graph G in relation to the spanning tree T .
Obviously, there is a single bran
h in every fundamental 
utset.Fundamental 
utsets may also be de�ned for spanning forests, if attention is restri
ted to the
onne
ted 
omponent of the removed bran
h.If T (V;A0) is a spanning tree of a given graph G(V;A), then adding a 
hord to the tree 
reatesa fundamental 
ir
uit:
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De�nition 3.50. (fundamental 
ir
uit) Given a graph G and a spanning tree T , the 
ir
uitthat is 
reated by adding a 
hord to T is 
alled a fundamental 
ir
uit of graph G relative to thespanning tree T .
Similarly, there is a single 
hord in every fundamental 
ir
uit.Fundamental 
ir
uits may also be de�ned with relation to spanning forests. Again, adding a
hord to a spanning forest 
reates a single 
ir
uit.It 
an be proved that any 
utset of a graph G 
ontains at least one bran
h of every spanningforest of G. Similarly, a 
ir
uit of a graph G 
ontains at least one 
hord of every spanning forestof G. For 
onne
ted graphs, repla
e \forest" with \tree" in the pre
eding text.It 
an also be proved that the bran
hes in a fundamental 
ir
uit are exa
tly those bran
hes whosefundamental 
utsets 
ontain the 
hord of the 
ir
uit. Conversely, the 
hords in a fundamental
utset are exa
tly those 
hords whose fundamental 
ir
uits 
ontain the bran
h of the 
utset.Let F be a spanning forest of graph G. Let 
 be a 
hord of F and C its asso
iated fundamental
ir
uit. If a bran
h b of F in C is 
ut, the 
orresponding 
onne
ted 
omponent of F is splitinto two 
omponents. The ar
s of G with end points in ea
h of these two 
omponents are thefundamental 
utset relative to bran
h b. 
 is part of this 
utset, by the result in the previousparagraph. Hen
e 
 
onne
ts two di�erent 
onne
ted 
omponents of F � b, thus it is not partof any 
ir
uit. The 
on
lusion is that if in a spanning forest F a 
hord 
 is introdu
ed and anybran
h b in its fundamental 
ir
uit is removed, a new spanning forest F + 
 � b will result. It
an also be shown, using the results of the previous paragraph, that if in a spanning forest F abran
h b is removed and any 
hord 
 in its fundamental 
utset is introdu
ed, a new spanningforest F + 
� b will still result.Of 
ourse, there are trivial versions of fundamental 
ir
uits and 
utsets. In the 
ase of self-
onne
ting ar
s, whi
h are always 
hords, the 
orresponding fundamental 
ir
uit 
onsists ofthat single self-
onne
ting ar
, and thus does not 
ontain any bran
hes. On the other hand,bridges, whi
h are always bran
hes, 
orrespond to fundamental 
utsets 
onsisting of that singlebridge, and thus 
ontain no 
hords.
Spanning k-treesSpanning k-trees are an important theoreti
al framework for segmentation algorithms, sin
ethey partition a graph into k 
omponents:De�nition 3.51. (spanning k-tree) A k-tree kT (V0;A0) of a graph G(V;A) is a spanningk-tree of G if it 
overs G, i.e., V0 = V.
Sin
e a spanning k-tree kT (V;As) of a graph G(V;A) has the same number of verti
es as Gand As � A, it follows that it has at least as many 
onne
ted 
omponents. Hen
e, if 
 is thenumber of 
onne
ted 
omponents of G, then k � 
. If k = 
, then kT = 
T is also a spanningforest of G. Also, by Theorem 3.2, #As = #V � k.



3.3. GRIDS, GRAPHS, AND TREES 41
Theorem 3.4. There is a spanning k � 1-tree of a graph 
ontaining any spanning k-tree ofthe same graph, provided k > 
, where 
 is the number of 
onne
ted 
omponents of the graph.
Proof. Let kT (V;As) be a spanning k-tree of a graph G(V;A), su
h that k > 
, 
 being the
onne
ted 
omponents of G. The set A nAs is not empty, sin
e otherwise kT = G, and hen
ek = 
, whi
h is not true by hypothesis. The set A n As has at least one ar
 whi
h 
onne
tstwo di�erent 
onne
ted 
omponents of kT , sin
e otherwise all the ar
s of G not already in kT
ould be introdu
ed into kT , e�e
tively transforming it into G, without 
hanging the numberof 
onne
ted 
omponents, i.e., k = 
, whi
h is not true by hypothesis. Let then a 2 A n As
onne
t two 
onne
ted 
omponents of kT . Clearly a 
annot introdu
e any 
ir
uit in kT . Hen
e,the new 
onne
ted 
omponent obtained by adding a is a tree, and the resulting subgraph of Ghas k � 1 trees and still 
overs G: it is a spanning k � 1-tree.
The same way that inserting a 
onne
tor (see De�nition 3.52) to spanning k-tree resulted in aspanning k� 1-tree, removing a bran
h from a spanning k-tree results in a spanning k+1-tree:Theorem 3.5. Any spanning k-tree of a graph G(V;A) 
ontains a spanning k+ 1-tree of thesame graph, provided that k < #V.
Proof. Let kT (V;As) be a spanning k-tree of graph G(V;A), su
h that k < #V. The setAs is not empty, sin
e #As = #V � k. Consider an ar
 a 2 As. The removal of a does nota�e
t the number of verti
es in kT . Hen
e, kT � a is still spanning. Sin
e removal of a 
annotintrodu
e any 
ir
uit, kT remains a forest. Hen
e, the number of 
onne
ted 
omponents ofkT � a is 
 = #V � #As + 1 = k + 1. Hen
e, kT is a spanning forest with k + 1 
onne
ted
omponents: it is a spanning k + 1-tree.
Bran
hes, 
hords and 
onne
torsDe�nition 3.52. (Bran
h, 
hord and 
onne
tor) Let kT (V;As) be a spanning k-tree ofgraph G(V;A) with 
 
onne
ted 
omponents. The ar
s of G will be named bran
hes of kT ifthey belong to As, 
hords of kT if they do not belong to As but their end verti
es belong to thesame 
onne
ted 
omponent of kT , and 
onne
tors if they also do not belong to As but their endverti
es belong to di�erent 
onne
ted 
omponents of kT .
Fundamental 
ir
uits and 
utsetsA 
hord of a spanning k-tree kT of a graph G is also a 
hord of one of its 
omponents, saykTi. Hen
e, introdu
tion of a 
hord into the k-tree 
reates a 
ir
uit. This 
ir
uit is also afundamental 
ir
uit of Gi, the subgraph of G indu
ed by the verti
es of kTi.De�nition 3.53. (fundamental 
ir
uit of a k-tree) The 
ir
uit 
reated in a k-tree byintrodu
tion of one of its 
hords.



42 CHAPTER 3. GRAPH THEORETIC FOUNDATIONS FOR IMAGE ANALYSIS
If a 
hord of a spanning k-tree is inserted into the spanning k-tree and any of the bran
hes inthe resulting 
ir
uit is removed, a spanning k-tree still results. This stems from a similar resultfor trees.Noti
e that self-
onne
ting ar
s are 
hords of any spanning k-tree, their 
orresponding funda-mental 
ir
uit 
ontaining only the self-
onne
ting ar
.A bran
h of a spanning k-tree kT of a graph G is also a bran
h of one of its 
omponents, saykTi. Hen
e, removal of a bran
h from a k-tree dis
onne
ts the 
orresponding kTi. The 
hords ofGi relative to kTi with end verti
es in ea
h of the 
omponents thus obtained form a fundamental
utset of Gi relative to kTi:De�nition 3.54. (fundamental 
utset of a k-tree) The 
utset asso
iated to the two 
om-ponents obtained by removal of a bran
h of a k-tree from one of its 
omponents.
If a bran
h of a spanning k-tree is removed from the spanning k-tree and any of the 
hords inthe asso
iated fundamental 
utset is inserted, a spanning k-tree still results. This stems from asimilar result for trees.Sin
e removal of any bran
h in a k-tree in
reases the number of 
onne
ted 
omponents, insertinga 
onne
tor to a spanning k-tree and removing one of its bran
hes still results in a spanningk-tree.Conne
tors of a k-tree 
onne
t distin
t trees of the k-tree, and thus their introdu
tion to thek-tree redu
es the number of 
onne
ted 
omponents. Sin
e removal of any bran
h in a k-treein
reases the number of 
onne
ted 
omponents, inserting a 
onne
tor to a k-tree and removingone of its bran
hes still results in a k-tree.A bridge 
an either be a bran
h or a 
onne
tor of a spanning k-tree, but it 
an never be a 
hord.If it is a bran
h, its 
orresponding fundamental 
utset 
onsists of only itself.Noti
e that, after inserting a 
onne
tor into a k-tree, thereby 
reating a k� 1-tree, some of the
onne
tors of the k-tree may be
ome 
hords of the new k � 1-tree. This is guaranteed not tohappen when the 
onne
tor is a bridge.
Seeded spanning k-treesDe�nition 3.55. (n-seed respe
ting spanning k-tree) Given a graph G(V;A) and a setS � V of n vertex seeds, a spanning k-tree whi
h in
ludes at most one seed in ea
h of its
omponent trees is a n-seed respe
ting spanning k-tree.
In the following, the term seeded spanning k-tree will be used often instead of n-seed respe
tingspanning k-tree.Obviously, a n-seed respe
ting spanning k-tree of a graph G(V;A) must have n � k � #V.De�nition 3.56. (smallest n-seed respe
ting spanning k-tree) Given a graph G(V;A)and a set S � V of n vertex seeds, a spanning k-tree whi
h in
ludes at most one seed in ea
h
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of its 
omponent trees, where k is as small as possible, is a smallest n-seed respe
ting spanningk-tree.Theorem 3.6. A smallest n-seed respe
ting spanning k-tree of a graph with 
 
onne
ted 
om-ponents has k = n+ 
0, where 
0 is the number of 
onne
ted 
omponents of the graph whi
h donot 
ontain any seed.
Proof. Let Gi, i = 1; : : : ; 
 be the 
omponents of the graph G to span. If Gi 
ontains no seeds,it 
an be spanned by a single 
omponent of the k-tree. If it 
ontains ni seeds, it 
an be spannedby ni 
omponents of the k-tree. Hen
e, k = 
0 +Pni = 
0 + n.Corollary 3.7. A smallest n-seed respe
ting spanning k-tree of a graph with 
 
onne
ted 
om-ponents, ea
h 
ontaining at least one seed, has k = n.
Bran
hes, 
hords, 
onne
tors and separatorsBran
hes, 
hords, and 
onne
tors are de�ned for seeded spanning k-trees as for spanning k-trees.However, 
onne
tors between seeded trees, whi
h 
annot be inserted into seeded spanning treeswithout violating seed separation, will be named separators:De�nition 3.57. (separator) Separators are ar
s 
onne
ting two di�erent 
omponents both
ontaining seeds.
Hen
e, in seeded spanning k-trees the term 
onne
tor will be reserved for simple, non-separating
onne
tors, all other 
onne
tors being separators.Theorem 3.8. A seeded spanning k-tree is smallest i� it has no 
onne
tors, only separators.
Proof. Let kT be a seeded spanning tree of G. It will be proved �rst that if kT is smallest,then it has no 
onne
tors. Then it will be proved that if kT has no 
onne
tors, then it must besmallest.If there is a 
onne
tor, that is, a 
onne
tor between a seedless 
omponent of the k-tree andany other 
omponent, then that 
onne
tor 
an be inserted into the k-tree, thereby transformingit into a spanning k � 1-tree whi
h is still respe
ts the set of seeds, sin
e at most one of the
omponents 
onne
ted through that 
onne
tor has a seed. Hen
e, the spanning k-tree 
an notbe smallest.If kT is not smallest, then, sin
e ea
h seed in S = fs1; : : : ; sng is 
ontained in a single 
omponentkTi of the spanning k-tree and all su
h seeded 
omponents are separated, there must be atleast one seedless 
omponent of kT in a seeded 
onne
ted 
omponent Gm of G or two seedless
omponents of kT in a seedless 
onne
ted 
omponent Gm of G. Otherwise, by Theorem 3.6,kT would indeed be smallest. In both 
ases, there must be a 
onne
tor between one of theseedless 
omponents and another 
omponent of the same 
onne
ted 
omponent Gm, sin
e Gm is
onne
ted. Hen
e, there are 
onne
tors.
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Theorem 3.9. All seeded spanning k-trees whi
h are not smallest are subgraphs of some seededspanning k � 1-tree of the same graph for the same set of seeds.
Proof. Let kT be a seeded spanning k-tree of some graph G. Assume kT is not smallest. ByTheorem 3.8, kT must have at least one 
onne
tor. Take any 
onne
tor 
 of kT and build thegraph kT + 
. Sin
e 
 is a 
onne
tor, it 
onne
ted two 
onne
ted 
omponents of kT , and hen
eit introdu
ed no 
ir
uits. Sin
e the number of 
onne
ted 
omponents in kT + 
 redu
ed by one,it is obvious that it is a k � 1-tree. Sin
e at least one of the 
omponents 
onne
ted by 
 isseedless, kT + 
 also respe
ts seed separation. Hen
e, kT + 
 is a seeded spanning k� 1-tree ofwhi
h kT is a subgraph.
Theorem 3.10. All seeded spanning k-trees with at least one bran
h have subgraphs whi
h areseeded spanning k + 1-trees of the same graph for the same set of seeds.
Proof. Let kT be a seeded spanning k-tree of some graph G. Assume kT has at least onebran
h. Take any bran
h b of kT and build the graph kT � b. Sin
e b is a bran
h, its removalseparates a 
omponent of kT into two 
omponents, only one of whi
h may have a seed. Hen
e,the resulting graph is a seeded spanning k + 1-tree and a subgraph of kT .
Fundamental 
ir
uits, 
utsets, and paths
Fundamental 
ir
uits and 
utsets are de�ned for seeded spanning k-trees as for spanning k-trees.De�nition 3.58. (fundamental path) Let 
 be a separator of a seeded spanning k-tree kT .Let separator 
 separate two 
omponents kTi and kTj with seeds si and sj, respe
tively. The onlysi; sj-path in the tree kTi [ kTj [ f
g is the fundamental path of kT relative to separator 
.
As happened with spanning k-trees, in seeded spanning k-trees any bran
h 
an be ex
hangedwith a 
hord in its fundamental 
utset and any 
hord 
an be ex
hanged with a bran
h in itsfundamental 
ir
uit: none of these operations violates the seeds separation, sin
e the set ofverti
es in ea
h 
onne
ted 
omponent of the k-tree does not 
hange, only the ar
s 
hange.Again as happened with spanning k-trees, in seeded spanning k-trees any 
onne
tor 
an beex
hanged with any bran
h. This operation does not violate the seed separation, sin
e insertinga 
onne
tor (by de�nition of 
onne
tor) does not 
onne
t two seeds and removing any bran
h
an only result in an extra, seedless 
omponent. The �nal number of 
omponents is the same.A similar result 
an be proved for separators. In a seeded spanning k-tree any separator 
anbe ex
hanged with any bran
h in its fundamental path. This is so be
ause, after insertion ofthe separator into the k-tree, the two 
omponents plus the separator form a new tree and thefundamental path is the only path in this new tree between its two seeds. Hen
e, if any bran
hin this path is removed, the seed separation is again valid and the number of 
omponents of thek-tree is the same.
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Graphs and ve
tor spa
esDe�nition 3.59. (
ir
uit ve
tor [186℄) Cir
uits and unions of ar
-disjoint 
ir
uits of a graphare 
alled 
ir
uit ve
tors of a graph.De�nition 3.60. (
utset ve
tor [186℄) Cutsets and unions of ar
-disjoint 
utsets of a graphare 
alled 
utset ve
tors of a graph.
Hen
e, 
ut and 
utset ve
tor are one and the same 
on
ept.The names 
ir
uit and 
utset ve
tors stem from the fa
t that the set of ar
 indu
ed subgraphsof a graph G(V;A) with 
 
onne
ted 
omponents, equipped with the ring sum of sets operator,7is a ve
tor spa
e of dimension #A over the Galois �eld GF(2) (see [186℄ for details8) wheretwo orthogonal subspa
es 
an be de�ned: the subspa
e of all 
ir
uits and unions of ar
-disjoint
ir
uits and the subspa
e of all 
utsets and unions of ar
-disjoint 
utsets.It 
an be proved that, given a spanning forest F(V;As) of a graph G(V;A), the set of itsfundamental 
ir
uits (dimension #A � #As = #A � #V + 
 = �(G)) and the set of itsfundamental 
utsets (dimension #As = #V � 
 = �(G)) are bases of the subspa
e of 
ir
uitsand unions of ar
-disjoint 
ir
uits and of the subspa
e of 
utsets and unions of ar
-disjoint
utsets, respe
tively. Hen
e, any 
ir
uit ve
tor 
an be written as a ring sum of fundamental
ir
uits and any 
utset ve
tor (or 
ut) 
an be written as a ring sum of fundamental 
utsets.Let F(V;As) be a spanning forest of a graph G(V;A). Given a 
ir
uit 
onsisting of theset of ar
s C, de
ompose it into two disjoint sets Cb � As and C
 � A n As, 
ontainingits bran
hes and its 
hords, respe
tively. Then, it 
an be proved that C is the ring sumof the fundamental 
ir
uits (relative to F) 
orresponding to the 
hords in C
 (and no other
ombination of fundamental 
ir
uits results in C). It is straightforward to prove additionallythat the bran
hes in Cb o

ur in an odd number of su
h fundamental 
ir
uits, sin
e bran
heswhi
h do o

ur an even number of times disappear in the ring sum.The same thing 
an be proved for 
uts relative to fundamental 
utsets, if bran
hes and 
hordsare ex
hanged in the previous paragraph.
Shortest spanning trees and forestsLet w(�) : A ! R be a weight fun
tion de�ned on the ar
s A of graph G(V;A). Let W (�) bede�ned as W (A; w) = Xa2Aw(a):De�nition 3.61. (shortest [or minimal℄ spanning tree) A subgraph T (V;As) of 
on-ne
ted graph G(V;A) is a SST (Shortest Spanning Tree) of G if T is a spanning tree and noother spanning tree T 0(V;A0s) exists su
h that W (A0s; w) < W (As; w).7The ring sum of two sets A and B is A�B = (A [B) n (A \B).8Multipli
ation of a set by 1 results in the same set, multipli
ation by 0 results in the empty set ;.
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LST (Longest Spanning Tree), SSF (Shortest Spanning Forest), and LSF (Longest SpanningForest) are de�ned similarly.Theorem 3.11. (
hord and bran
h 
ondition) Let F(V;As) be a spanning forest of graphG(V;A). The following are equivalent:1. F is a SSF of G.2. (bran
h 
ondition) w(b) � w(
) for any bran
h b of F and for any 
hord 
 in the 
orre-sponding fundamental 
utset relative to F .3. (
hord 
ondition) w(
) � w(b) for any 
hord 
 of F and for any bran
h b in the 
orre-sponding fundamental 
ir
uit relative to F .
Proof. It will be shown that 1) 2) 3) 1.1) 2: Assume 2 does not hold for F , i.e., there is a bran
h b and a 
hord 
 in the fundamental
utset of b su
h that w(b) > w(
). It was shown before that F + 
� b is still a spanning forest.But W (As [ f
g n fbg; w) = W (As; w) + w(
)� w(b) < W (As; w). Hen
e, F 
annot be a SSFof G, that is, :2) :1, whi
h is the same as 1) 2.2) 3: Assume 2 holds for F . Take any 
hord 
 of F and its 
orresponding fundamental 
ir
uitC. From a result before, 
 belongs to the fundamental 
utsets of all bran
hes b in C. Hen
e,sin
e the bran
h 
ondition holds, w(
) � w(b) for all bran
hes in C and 3 holds.3) 1: Assume 3 holds for F(V;As). Let F 0(V;A0s) be a SSF of G, for whi
h, as was alreadyproven, 3 holds (1) 2 and 2) 3). It will be shown that F 0 
an be made equal to F througha series of simple operations whi
h neither in
reases nor de
reases the total weight W (A0s; w).This proves that F is indeed a SSF, sin
e W (As; w) =W (A0s; w).If F and F 0 are equal, then F is also a SSF. Suppose then that F and F 0 are di�erent. Sin
eF and F 0 are both spanning forest, both 
ontain the same number of ar
s of G: #As = #A0s.Hen
e, there is an equal non-zero number of ar
s in As nA0s and A0s nAs. The ar
s in A0s nAsare 
hords of F and vi
e versa.Take a 
hord 
 of F whi
h is also a bran
h of F 0. Let C be the 
orresponding fundamental
ir
uit in F . C 
an be written as the ring sum of the fundamental 
ir
uits of F 0 
orrespondingto the 
hords of F 0 in C. Sin
e 
 2 A0s, it must o

ur in an odd number of these fundamental
ir
uits, 
orresponding to an odd number of 
hords of F 0 in C. Let then b be a 
hord of F 0 in
ir
uit C su
h that its fundamental 
ir
uit in F 0 in
ludes 
. Then w(
) � w(b), sin
e b and 
are respe
tively bran
h and 
hord of the same fundamental 
ir
uit in F (3 holds for F), andw(b) � w(
), sin
e b and 
 are also respe
tively 
hord and bran
h of the same fundamental
ir
uit in F 0 (3 holds for F 0). Hen
e, w(b) = w(
). Sin
e F 0 � 
 + b is also a spanning forestand it has the same weight as F 0, the 
hord 
 of F 
an be substituted by the bran
h b of F inF 0. Repeating this pro
ess while there are bran
hes of F 0 whi
h are 
hords of F , su
h ar
s 
anbe su

essively eliminated from F 0 without 
hanging its global weight W (A0s; w). The pro
essterminates when A0s n As is empty, i.e., when A0s = As. Hen
e, W (As; w) = W (A0s; w) andthus F is also a SSF.
For LSF, simply invert the weight relations in the 
hord and bran
h 
onditions.
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Lemma 3.12. Let T 0(V0;A0s) be a 
onne
ted subgraph of a spanning forest F(V;As) of agraph G(V;A). Let G0(V0;A0) be the subgraph of G indu
ed by the verti
es V0 in T 0. IfT 00(V0;A00s) is a spanning tree of G0, then the graph F 00(V;As n A0s [ A00s) is also a spanningforest of G.
Proof. The subgraph T 0 is a
y
li
, sin
e it is a subgraph of the a
y
li
 graph F . Sin
e it isalso 
onne
ted, T 0 is a tree. Sin
e it spans the verti
es of G0, it is a spanning tree of G0.Noti
e that, sin
e A0s � As, then #�As nA0s� = #As �#A0s. Also noti
e that #A0s = #A00s ,sin
e both T 0 and T 00 span G0.Suppose As nA0s and A00s have a 
ommon ar
 a. This implies, of 
ourse, that a belongs to Asand A00s but not to A0s. Sin
e a 2 A00s , a is in
ident on two verti
es of G0. These two verti
es,by de�nition of tree, are 
onne
ted through a unique path in T 0. Hen
e, there are two di�erentpaths in F between these two verti
es (viz. a and the path in T 0), whi
h is a 
ontradi
tion,sin
e F is a forest. Thus, As n A0s and A00s have no 
ommon ar
s, i.e., #�As n A0s [ A00s� =#As �#A0s +#A00s = #As.Sin
e F has the same number of 
onne
ted 
omponents 
 as G, and sin
e F 00 has only ar
s ofG, it is 
lear that F 00 
annot have less 
onne
ted 
omponents than F . It will be shown that itneither 
an have more 
onne
ted 
omponents.Consider the path P between any two 
onne
ted verti
es v1 and v2 in F .If P does not in
lude any ar
s of A0s, then 
learly v1 and v2 are also 
onne
ted in F 00. Ifit 
ontains ar
s of A0s, these ar
s 
onne
t verti
es of G0 whi
h are 
onne
ted by a path in T 00.Hen
e, all ar
s of A0s in P 
an be substituted by a path in T 00, 
ontaining only ar
s in A00s . Thus,a walk between the two verti
es v1 and v2 exists in F 00. Hen
e, v1 and v2 are also 
onne
ted inF 00.Thus, F and F 00 have the same number of 
onne
ted 
omponents 
. Sin
e they also have thesame number of ar
s #As = #A00s = #V � 
, F 00 is indeed a (spanning) forest of G.Theorem 3.13. Let F 0(V0;A0s) be a subgraph of a spanning forest F(V;As) of a graph G(V;A).Let F 0i(V0i;A0si) be a 
onne
ted 
omponent of F 0 and Gi(V0i;A0i) the subgraph of G indu
ed byV0i. If F is a SSF, then F 0i is a SST of the 
onne
ted graph Gi.
Proof. Suppose there is an i for whi
h F 0i is not a SST of Gi. Then, there is a lighter wayto 
over Gi. Let F 00i be a lighter 
overing of Gi. Clearly, the bran
hes of F whi
h are in F 0i
ould then be substituted by the bran
hes in F 00i , thus redu
ing its overall weight. Sin
e thissubstitution, by Lemma 3.12, still results in a spanning tree, F 
annot be a SSF, whi
h is a
ontradi
tion. Thus, F 0i is indeed a SST of Gi.Corollary 3.14. If F is a SSF of graph G and Fi one of its 
onne
ted 
omponents, then Fiis a SST of the 
orresponding 
onne
ted 
omponent Gi of G.
Proof. The result is immediate from Theorem 3.13.
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AlgorithmsThere are two 
lassi
 algorithms for 
omputing the SST of a 
onne
ted graph G(V;A): Kruskaland Prim [28℄. Both work by su

essively adding to A0 ar
s from A nA0 that are safe for A0.An ar
 a is safe for A0, where A0 is a subset of the ar
s on some SST of G, if A0 [ fag is also asubset of the ar
s of some SST of G. The set A0 is initially empty. Thus A0 is kept always as thesubset of the ar
s in some SST of G, this being the algorithm's invariant. Hen
e, the subgraphF(V;A0) is an a
y
li
 graph, i.e., a forest. The algorithm �nishes after exa
tly #V� 1 = �(G)ar
 insertions, when the forest F(V;A0) be
omes a SST of G(V;A).Kruskal's algorithm [28℄ simply adds to A0 one of the lightest of the ar
s 
onne
ting any twotrees in the forest F . It runs, with an appropriate implementation, in O(#A lg#A). In the
ase of planar, simple graphs, it runs in O(#V lg#V) (see Se
tion 3.4.1).Prim's algorithm [28℄ also su

essively adds ar
s to A0, though the ar
 added at ea
h step is
hosen as one of the ar
s having minimum weight with a single end vertex in the subgraphindu
ed by A0. When A0 is empty, the subgraph 
onsists of an arbitrarily 
hosen vertex,whi
h is the \seed" of the algorithm. Hen
e, the subgraph G0(V0;A0) indu
ed by A0 on G is atree at all steps of the algorithm. An implementation using Fibona

i priority queues runs inO(#A+#V lg#V), whi
h, in the 
ase of planar, simple graphs, is asymptoti
ally the same asO(#V lg#V) (see Se
tion 3.4.1).Both algorithms 
an be proven 
orre
t through the use of the following theorem from [28,Corolary 24.2℄, reprodu
ed here without proof:Theorem 3.15. Let G(V;A) be a 
onne
ted graph with ar
 weight fun
tion w(�) : A ! R .Let A0 be a subset of the ar
s in some SST of G. Let Fi be a 
onne
ted 
omponent in the forestF(V;A0). If a is one of the lightest ar
s 
onne
ting Fi to some other 
onne
ted 
omponent ofF , then a is safe for A0, i.e., A0 [ fag is also a subset of the ar
s in some SST of G.
These algorithms are also appli
able to dis
onne
ted graphs, and hen
e also solve the SSFproblem. The Kruskal algorithm works without 
hange. As for the Prim algorithm, ea
h runof the basi
 algorithm builds the SST of a 
onne
ted 
omponent of the graph. Hen
e, 
 runsof the basi
 algorithm are ne
essary in a graph with 
 
onne
ted 
omponents. Sin
e verti
esalready in some tree may be marked in 
onstant time at ea
h step of the algorithm, thus not
hanging its asymptoti
 performan
e, the seeds may be sear
hed in linear time, by sear
hingthe next unmarked vertex in a list of graph verti
es. Alternatively, both the Prim and Kruskalalgorithms may be applied in parallel to ea
h of the 
 graph 
omponents.
Shortest spanning k-treesSSkTs are an important framework in whi
h to des
ribe some segmentation algorithms:De�nition 3.62. (shortest [or minimal℄ spanning k-tree) A spanning k-tree of a graphis a SSkT (Shortest Spanning k-Tree) of that graph if no other spanning k-tree exists with asmaller weight.
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Theorem 3.16. The 
onne
ted 
omponents kTi(Vi;Asi), with i = 1; : : : k, of a SSkTkT (V;As) of a graph G(V;A), are SSTs of the subgraphs Gi indu
ed in G by the 
orrespondingset of verti
es Vi.
Proof. Let Gi(Vi;Ai) be the subgraph of G indu
ed by the verti
es Vi of a tree kTi of kT .Suppose kTi is not a SST of Gi. Then it is possible to 
hose another tree spanning Gi with asmaller weight than kTi (
hoose a SST of Gi), without 
hanging the weight asso
iated to theother 
omponents of kT and thereby redu
ing the weight of kT . But this is a 
ontradi
tion,sin
e Tk is a SSkT of G. Hen
e, kTi is indeed a SST of Gi, for i = 1; : : : ; k.
The 
onverse of this theorem is not true. Not all spanning k-trees of a graph G with the propertythat ea
h tree is a SST of its 
orresponding subgraph of G are SSkT of G. Counter examplesare easy to 
ontrive.Lemma 3.17. Let kT be a spanning k-tree of G. If C is a 
ir
uit in G 
ontaining only bran
hesand 
hords of kT , then C 
an be expressed as a ring sum of fundamental 
ir
uits of kT , and allbran
hes of kT in C o

ur in an odd number of these fundamental 
ir
uits.
Proof. First it will be proved that 
ir
uit C is 
ontained in the subgraph Gi indu
ed by theverti
es of a 
omponent kTi of kT . Then, using Theorem 3.16 and the fa
t that 
ir
uits in agraph 
an be expressed as ring sums of its fundamental 
ir
uits relative to some SSF, the resultis immediate.Let 
ir
uit C, of length l > 0, 
onsist of v0; a1; v1; : : : ; vl�1; al; vl. Sin
e the trees kTi of thespanning kT partition the set of verti
es into disjoint sets, one for ea
h kTi, v0 belongs to somekTi, with i 2 f1; : : : ; kg. Suppose now that vn, with 0 � n < l, also belongs to kTi. The ar
an+1 is not a 
onne
tor. If it is a bran
h, it 
onne
ts two verti
es from the same 
omponent ofkT . The same thing happens if an+1 is a 
hord. Hen
e, vn+1 also belongs to kTi. Hen
e, byindu
tion, all verti
es in the 
ir
uit belong to the same 
omponent of kT . Sin
e all the ar
s inG in
ident on verti
es of the same 
omponent kTi of kT belong to the 
orresponding Gi, it is
lear that 
ir
uit C is 
ontained on some Gi.Theorem 3.18. (bran
h, 
hord, and 
onne
tor 
onditions) Let kT (V;As) be a spanningk-tree of graph G(V;A). Consider the following statements:1. kT is a SSkT of G.2. (bran
h 
ondition) w(b) � w(
) for any bran
h b of kT and for any 
hord 
 in the
orresponding fundamental 
utset relative to kT .3. (
hord 
ondition) w(b) � w(
) for any 
hord 
 of kT and for any bran
h b in the 
orre-sponding fundamental 
ir
uit relative to kT .4. (
onne
tor 
ondition) w(
) � w(b) for any bran
h b and for any 
onne
tor 
 of kT .The fa
t that a spanning k-tree is also a SSkT implies that bran
h, 
hord, and 
onne
tor 
on-ditions are true for kT , i.e., 1) 2 ^ 3 ^ 4:
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onne
tor 
ondition together with either the bran
h or the 
hord 
ondi-tions are suÆ
ient to guarantee that a spanning k-tree is a SSkT, i.e.,2 ^ 4) 1, and3 ^ 4) 1:
Proof. It will �rst be shown that 3 , 2. Then, it suÆ
es to show that 1 ) 3, 1 ) 4, and3 ^ 4) 1.Let Gi be the subgraphs of G indu
ed by the verti
es of the 
onne
ted 
omponents kTi of kT .3, 2: Both 3 and 2 apply to 
hords and bran
hes of the same 
omponent kTi of kT . Sin
e ea
h
omponent kTi of kT is a spanning tree of Gi, and sin
e, a

ording to Theorem 3.11, 
hord andbran
h 
onditions are equivalent for spanning forests (of whi
h spanning trees are parti
ular
ases), 3 and 2 must also be equivalent for the whole spanning k-tree kT .1 ) 3: Let 
 be a 
hord of kT and C its fundamental 
ir
uit. If there is any b 2 C su
h thatw(b) > w(
), then kT � b+ 
, whi
h is 
learly still a spanning k-tree of G, has a smaller weightthan kT , whi
h is a 
ontradi
tion, sin
e kT is a SSkT. Hen
e, 3 must hold.1 ) 4: Let 
 be a 
onne
tor of kT . If there is any b 2 As su
h that w(b) > w(
), thenkT � b+ 
, whi
h is 
learly still a spanning k-tree of G, has a smaller weight than kT , whi
h isa 
ontradi
tion, sin
e kT is a SSkT. Hen
e, 4 must hold.3 ^ 4) 1: Assume 3 and 4 hold for kT (V;As). Let kT 0(V;A0s) be a SSkT of G, for whi
h, aswas already proven, 3 and 4 hold. It will be shown that kT 0 
an be made equal to kT througha series of simple operations whi
h neither in
reases nor de
reases the total weight W (A0s; w).This proves that kT is indeed a SSkT, sin
e W (As; w) =W (A0s; w).If kT and kT 0 are equal, then kT is also a SSkT. Suppose then that kT and kT 0 are di�erent.Sin
e kT and kT 0 are both spanning k-trees, both 
ontain the same number of ar
s of G:#As = #A0s. Hen
e, there is an equal non-zero number of ar
s in As nA0s and A0s nAs. Thear
s in A0s nAs are 
hords or 
onne
tors of kT and bran
hes of kT 0 and vi
e versa.Suppose there is a 
hord 
 of kT whi
h is also a bran
h of kT 0. Let C be the 
orrespondingfundamental 
ir
uit in kT . C 
annot 
onsist solely of bran
hes of kT 0, sin
e otherwise kT 0 wouldnot be a k-tree. Hen
e, there are ar
s of C whi
h are not bran
hes of kT 0.Suppose that, of these ar
s, there is one ar
 b whi
h is a 
onne
tor of kT 0. Then w(
) � w(b),sin
e 
 is the 
hord of a fundamental 
ir
uit 
ontaining b in kT (3 holds for kT ), and w(
) � w(b),sin
e 
 is a bran
h of kT 0 and b is a 
onne
tor of kT 0 (4 holds for kT 0). Hen
e, w(
) = w(b).Sin
e kT 0� 
+ b is also a spanning k-tree and it has the same weight as kT 0, the 
hord 
 of kT
an be substituted by the bran
h b of kT in kT 0.If there is no 
onne
tor of kT 0 in C, then C 
onsists solely of bran
hes and 
hords of kT 0. ByLemma 3.17, it 
an be expressed as the a ring sum of fundamental 
ir
uits of kT 0. Sin
e 
 2 A0s,it must o

ur in an odd number of these fundamental 
ir
uits, 
orresponding to an odd numberof 
hords of kT 0 in C. Let then b be a 
hord of kT 0 in 
ir
uit C su
h that its fundamental
ir
uit in kT 0 in
ludes 
. Then w(
) � w(b), sin
e b and 
 are respe
tively bran
h and 
hord of
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the same fundamental 
ir
uit in kT (3 holds for kT ), and w(b) � w(
), sin
e b and 
 are alsorespe
tively 
hord and bran
h of the same fundamental 
ir
uit in kT 0 (3 holds for kT 0). Hen
e,w(b) = w(
). Sin
e kT 0 � 
+ b is also a spanning k-tree and it has the same weight as kT 0, the
hord 
 of kT 
an be substituted by the bran
h b of kT in kT 0.In either 
ase, a bran
h 
 of kT 0 
an be substituted by a bran
h b of kT in kT 0. Repeating thispro
ess while there are bran
hes of kT 0 whi
h are 
hords of kT , su
h ar
s are eliminated fromkT 0 without 
hanging its global weight W (A0s; w).If kT 0 = kT after the above pro
ess, then kT is indeed a SSkT. If not, then there must be somebran
h b of kT whi
h is not in kT 0.Suppose that b is a 
hord of kT 0 and C0 is its 
orresponding fundamental 
ir
uit in kT 0. C0
annot 
onsist solely of bran
hes of kT , sin
e otherwise kT would not be a k-tree. Let then 
be an ar
 of C0 whi
h is not in kT . Sin
e all bran
hes of kT 0 whi
h are also 
hords of kT havealready been removed from kT 0, 
 must be a 
onne
tor of kT . Then w(b) � w(
), sin
e b and
 are respe
tively bran
h and 
onne
tor of kT (4 holds for kT ), and w(b) � w(
), sin
e b and 
are also respe
tively 
hord and bran
h of the same fundamental 
ir
uit in kT 0 (3 holds for kT 0).Hen
e, w(b) = w(
). Sin
e kT 0 � 
+ b is also a spanning k-tree and it has the same weight askT 0, the 
hord 
 of kT 
an be substituted by the bran
h b of kT in kT 0.Suppose now that b is a 
onne
tor of kT 0. Sin
e there is a bran
h b of kT not in kT 0, theremust be a bran
h 
 of kT 0 not in kT . Sin
e all 
hords of kT whi
h are bran
hes of kT 0 havealready been removed, 
 must be a 
onne
tor of kT . Then w(b) � w(
), sin
e b and 
 arerespe
tively bran
h and 
onne
tor of kT (4 holds for kT ), and w(b) � w(
), sin
e b and 
 arealso respe
tively 
onne
tor and bran
h of kT 0 (4 holds for kT 0). Hen
e, w(b) = w(
). Sin
ekT 0 � 
+ b is also a spanning k-tree and it has the same weight as kT 0, the 
hord 
 of kT 
anbe substituted by the bran
h b of kT in kT 0.In either 
ase, a bran
h 
 of kT 0 
an be substituted by a bran
h b of kT in kT 0. Repeatingthis pro
ess while there are bran
hes of kT whi
h are either 
hords or 
onne
tors of kT 0, su
har
s are introdu
ed into kT 0 without 
hanging its global weight W (A0s; w). When the pro
essends, As nA0s is empty. Sin
e #As = #A0s, this implies that As = A0s. Sin
e the substitutionsperformed on kT 0 did not 
hange its global weight, then one must 
on
lude that kT 0 is still aSSkT and kT = kT 0 is indeed a SSkT.Theorem 3.19. If kT (V;As) is a SSkT of graph G(V;A) and 
 is a 
onne
tor of kT withminimum weight, then kT + 
 is a SSk � 1T of G.
Proof. Let C be the set of all 
onne
tors of kT , whi
h by hypothesis is not empty (otherwisethere would be no 
). Let 
 = argmin
2Cw(
). Then w(
) � w(
0) 8
0 2 C.It is 
lear, from the proof of Theorem 3.4, that k�1T 0 = kT + 
 is a spanning k � 1-tree of G.Hen
e, by Theorem 3.18, it suÆ
es to show that the bran
h and 
onne
tor 
onditions hold fork�1T 0 in order to prove that k�1T 0 is indeed a SSk � 1T.Sin
e 
 is a 
onne
tor of kT , it has end verti
es in two di�erent 
omponents of kT , say kTi andkTj , with i 6= j. Let Cij be the set of 
onne
tors between these two 
omponents. Let k�1T 0ij
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be the union of kTi with kTj though 
 in k�1T 0. The set Cij is 
learly the fundamental 
utset
orresponding to the bran
h 
 in k�1T 0. Sin
e 
 is a minimum weight 
onne
tor of kT and allar
s in Cij are 
onne
tors of kT , it is 
lear that the bran
h 
ondition is valid for bran
h 
 ink�1T 0.The ar
s in Cij n f
g are 
learly all 
hords of k�1T 0, in parti
ular of 
omponent k�1Tij . Sin
ethese ar
s are also 
onne
tors of kT , whi
h is a SSkT, then w(
) � w(b) 8
 2 Cij and 8b 2 As,and hen
e also for all bran
hes b in kTi and kTj . It is 
lear, then, that the fundamental 
utsets ofk�1T 0ij also ful�ll the bran
h 
ondition, sin
e all the new 
hords are heavier than all bran
hes ofk�1T 0ij , and the old 
hords already ful�lled the bran
h 
ondition in kT , given that it is a SSkT.All the other 
omponents of kT are una�e
ted, and hen
e also ful�ll the bran
h 
ondition.The 
onne
tor 
ondition is also ful�lled for k�1T 0, sin
e there is only one new bran
h, 
, whi
hwas 
hosen a minimum weight 
onne
tor of kT , and the 
onne
tors of k�1T 0 are C nCij .Theorem 3.20. Every SSkT of a graph with 
 
onne
ted 
omponents is a subgraph of someSSk � 1T, provided that k > 
.
Proof. Sin
e k is larger than the number of 
onne
ted 
omponents of G, there must be at leastone 
onne
tor of kT in G. Hen
e, it suÆ
es to 
hoose the 
onne
tor with minimum weight andadd it to the original SSkT. The result, by Theorem 3.19, is a SSk � 1T.Theorem 3.21. Every SSkT kT of a graph G is a subgraph of some SSF of that graph.
Proof. Let 
 be the number of 
onne
ted 
omponents of G. While k > 
, it is possible,by Theorems 3.20 and 3.19, to 
onstru
t a sequen
e of shortest spanning n-trees nT , withn = k; : : : ; 
, where 
 is the number of 
onne
ted 
omponents of the graph. It is 
lear that nT isa subgraph of mT whenever n � m. But 
T is a SSF of G (a spanning 
-tree of G is a spanningforest of G). Hen
e kT is a subgraph of 
T .Theorem 3.22. If kT (V;As) is a SSkT of graph G(V;A) and b is a bran
h of kT withmaximum weight, then kT � b is a SSk + 1T of G.
Proof. By hypothesis As is not empty (otherwise there would be no b). Sin
e b is maximum,i.e., b = argmaxa2As w(a), it is 
lear that w(b) � w(b0) 8b0 2 As.It is also 
lear, from the proof of Theorem 3.5, that k+1T 0 = kT � b is a spanning k + 1-tree ofG. Hen
e, by Theorem 3.18, it suÆ
es to show that the bran
h and 
onne
tor 
onditions holdfor k+1T 0 in order to prove that k+1T 0 is indeed a SSk + 1T.Let C be the fundamental 
utset of kT relative to b. It 
onsists of one bran
h, b, and theremaining ar
s C n fbg are 
hords. When b is removed from kT , the ar
s in C, in
luding thebran
h b, 
hange their role to 
onne
tors. The bran
h 
ondition must still be true, sin
e theonly 
hange to remaining bran
hes is that they may have lost some 
hords in their fundamental
utsets.The 
onne
tor 
ondition holds for the 
onne
tors of kT , whi
h are also 
onne
tors of k+1T 0,sin
e the only 
hange was the disappearan
e of b. Sin
e b, now a 
onne
tor, was 
hosen as
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a maximum weight bran
h of kT , the 
onne
tor 
ondition holds for b. It remains to be seenthat the 
hords in C n fbg are indeed not lighter than any remaining bran
h. Sin
e the bran
h
ondition holds for kT , w(b) � w(
) 8
 2 C n fbg. But b was 
hosen su
h that w(b) � w(b0)8b0 2 As. Hen
e, w(
) � w(b) 8b 2 As and 8
 2 C n fbg, and the 
onne
tor 
ondition holds fork+1T 0.Theorem 3.23. Every SSkT of a graph G(V;A) has a subgraph whi
h is a SSk+1T, providedthat k < #V.
Proof. Sin
e k is smaller than the number of verti
es of G, there must be at least one bran
hin kT . Hen
e, it suÆ
es to 
hoose the bran
h with maximum weight an remove it from theoriginal SSkT. The result, by Theorem 3.22, is a SSk + 1T.Theorem 3.24. Given a SSF F(V;As) = 
T (V;As) of a graph G(V;A) with 
 
onne
ted
omponents, a SSkT may be obtained, provided that k � #V, by removing from F a set B ofk � 
 bran
hes 
hosen so that w(b) � w(b0) 8b 2 B and 8b0 2 As nB.
Proof. Apply Theorem 3.22 repeatedly.
AlgorithmsTheorem 3.19 proves that, at step n of the Kruskal algorithm, the forest of sele
ted bran
hes isa SS#V�nT of the graph G(V;A).9 This is so be
ause, in Kruskal's algorithm, the ar
s enterthe forest in non-de
reasing weight order, and only if they are 
onne
tors, i.e., if they 
onne
ttwo trees in the forest (
hords are dis
arded). Hen
e, Theorem 3.19 is appli
able at ea
h step.Sin
e the spanning #V-tree with no ar
s is indeed a SS#VT, it is obvious, by indu
tion, thatat ea
h step of the Kruskal algorithm one has a SSkT.Also, if a SSF F of a graph G is available, one 
an 
ut forest bran
hes su

essively, a

ording toTheorem 3.24, and thus obtain a sequen
e of SSkT, with in
reasing k. Even though this methodis not very eÆ
ient, it has a ni
e parallel with a similar algorithm whi
h 
an be used to obtainSSSSkTs (to be de�ned later) of a graph. This type of algorithms will be 
alled destru
tive,sin
e they a
hieve the desired result by removing bran
hes from a SSF, i.e., by destroying aSSF. The Kruskal algorithm, on the other hand, will be termed 
onstru
tive.
Shortest seeded spanning k-treesDe�nition 3.63. (shortest seeded spanning k-tree) A n-seed respe
ting spanning k-tree ofa graph is a SSSkT (Shortest Seeded Spanning k-Tree) of that graph if no other seeded spanningk-tree exists with a smaller weight.9At step 0, i.e., before the �rst bran
h is inserted, the forest has no ar
s and hen
e has #V 
omponents(trees).



54 CHAPTER 3. GRAPH THEORETIC FOUNDATIONS FOR IMAGE ANALYSIS
De�nition 3.64. (smallest shortest seeded spanning k-tree) If a SSSkT is also smallest,i.e., k is as small as possible, then it will be 
alled a SSSSkT (Smallest Shortest Seeded Spanningk-Tree).Theorem 3.25. The 
onne
ted 
omponents kTi(Vi;Asi), with i = 1; : : : k, of a SSSkTkT (V;As) of a graph G(V;A), are SSTs of the subgraphs Gi indu
ed in G by the 
orrespondingset of verti
es Vi.
Proof. Let Gi(Vi;Ai) be the subgraph of G indu
ed by the verti
es Vi of a tree kTi of kT .Suppose kTi is not a SST of Gi. Then it is possible to 
hose another tree spanning Gi with asmaller weight than kTi (
hoose a SST of Gi), without 
hanging the weight asso
iated to theother 
omponents of kT and thereby redu
ing the weight of kT . But this is a 
ontradi
tion,sin
e Tk is a SSSkT of G. Hen
e, kTi is indeed a SST of Gi, for i = 1; : : : ; k.Lemma 3.26. Consider two (unique) paths P = v0; vf -path � A and P0 = v00; vf -path � A ina tree T (V;A). If v0 6= v00, then the ring sum P�P0 of P and P0 is a v0; v00-path in T .
Proof. Let v be the �rst vertex in 
ommon betweenP and P0, starting in v0 and v00, respe
tively.Let P1 and P2 be the segments of P before and after v, respe
tively, i.e., P1 = v0; v-path andP2 = v; vf -path. De�ne P01 and P02 similarly.10 Clearly, P = P1 [P2 and P0 = P01 [P02. Sin
ein a tree there is a single path between any two verti
es, see Theorem 3.1, it is obvious thatP2 = P02. On the other hand, by 
onstru
tion, P1 \P01 = ;. Hen
e, P�P0 = P1 [P01, that is,a path between v0 and v00.Lemma 3.27. If P � A is a v0; vf -path and P0 � A is a v0; vf -path, i.e., both are pathsbetween the same end verti
es in a graph G(V;A), then the ring sum P � P0 of P and P0 iseither empty, a 
ir
uit, or a union of ar
-disjoint 
ir
uits of G. Moreover, P�P0 is empty onlyif P = P0 and all 
ir
uits in P�P0 
ontain ar
s from both paths.
Proof. Consider the subgraphs GP(VP;P) and GP0(VP0 ;P0) of G indu
ed by P and P0, respe
-tively. Let GP�P0(VP�P0 ;P�P0) be the subgraph of G indu
ed by P�P0. Let v 2 VP [V0P.If v = v0, then its degree in GP�P0 will either be 0, if both paths share the same ar
 in
ident onv0, or 2 otherwise. The same goes for v = vf . If v 6= vo; vf , then its degree will either be 0, ifboth paths share the same pair of ar
s in
ident on v, 2 if both paths share a single ar
 in
identon v, or 4, if the ar
s on both paths whi
h are in
ident on v are all di�erent. Clearly, verti
esof degree 0 do not belong to GP�P0 . Hen
e, graph GP�P0 is either empty or it 
ontains onlyverti
es with degrees 2 and 4, i.e., it is either a 
ir
uit or a union of ar
-disjoint 
ir
uits.That the 
ir
uits 
ontain ar
s from both paths is obvious, for otherwise one of the paths would
ontain a 
ir
uit, whi
h 
annot happen by de�nition.Lemma 3.28. Let kT be a seeded spanning k-tree of graph G. Let C be a 
ir
uit in G. IfC 
ontains no 
onne
tors, then C either 
ontains no separators or it 
ontains at least twoseparators.10The fa
t that one of these paths 
an be empty in no way invalidates the rest of the arguments.
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Proof. Let 
ir
uit C in graph G(V;A) 
onsist of the sequen
e v0; a1; v1; : : : ; vk, with v0 = vk.Let v0 belong to 
omponent kTi(Vi;Asi) of kT (V;As). This 
ir
uit 
onsists of bran
hes, 
hords,and separators of kT . Only the separators 
onne
t verti
es of di�erent 
omponents of kT .Hen
e, if al is the �rst separator in the sequen
e above, vi 2 Vi with i < l. The separator al
onne
ts 
omponent kTi with some 
omponent kTj , with i 6= j. If there is no other separatorin the sequen
e, then one similarly has to 
on
lude that vi 2 Vj with i � l. But in that 
asev0 = vk 2 Vj , whi
h is a 
ontradi
tion, sin
e v0 2 Vi, and Vi \Vj = ; for i 6= j. Hen
e, theremust be another separator in the sequen
e.Lemma 3.29. Let C be a 
ir
uit in graph G. Let kT be a seeded k-tree of G. If b 2 C is abran
h of kT , then either:1. there is a 
onne
tor 
 of kT in C; or2. b belongs to a fundamental path of some separator 
 of kT in C; or3. b belongs to the fundamental 
ir
uit of some 
hord 
 of kT in C.
Proof. The 
ir
uit C 
annot 
onsist solely of bran
hes of kT , sin
e a k-tree does not 
ontainany 
ir
uits. Hen
e, C must 
ontain at least one 
onne
tor, separator or 
hord of kT .If C 
ontains at least one 
onne
tor of kT , then 1 holds.If C does not 
ontain any 
onne
tor of kT , then it must 
ontain at least one separator or 
hord.If it 
ontains a separator, then, by Lemma 3.28, it 
ontains at least two su
h separators. Let kTibe the 
omponent of kT 
ontaining b. Let b belong to a path P between two separators in C (itis 
lear that b must belong to one su
h paths). Let 
1 and 
2 be the 
orresponding separatorsand let v1 and v2 be the two verti
es in kTi whi
h are end verti
es of 
1 and 
2, respe
tively.Clearly, P is a v1; v2-path. If P1 and P2 are the restri
tions to kTi of the fundamental pathsasso
iated to 
1 and 
2, then it is 
lear that P1 = v1; si-path and P2 = v2; si-path, where si isthe seed of kTi in kT . Hen
e, by Lemma 3.26, P12 = P1 �P2 = v1; v2-path is a path betweenv1 and v2 in kTi. Now either b belongs to P1 or P2, and 2 holds, or it does not. Suppose it doesnot. Then paths P and P12 between v1 and v2 are di�erent, given that b belongs to the formerbut not to the latter. By Lemma 3.27, P � P12 is a 
ir
uit or a sum of ar
-disjoint 
ir
uits ofGi, the subgraph of G indu
ed by the verti
es of kTi. Moreover, b 2 P�P12, sin
e it does notbelong to P12. It is 
lear that b belongs to one of the ar
-disjoint 
ir
uits in P�P12. Let it be
ir
uit C0 in Gi. C0 
an be written as the ring sum of the fundamental 
ir
uits 
orresponding tothe 
hords of kTi in C0 and b o

urs in an odd number of these fundamental 
ir
uits. Noti
e thatthe 
hords of these fundamental 
ir
uits all belong to P, and hen
e to C, sin
e P12 
ontainsonly bran
hes of kTi. That is, 3 holds.If C does not 
ontain any separator, then it 
onsists solely of bran
hes and 
hords. Hen
e, byLemma 3.17, it 
an be expressed as a ring sum of the fundamental 
ir
uits of kT 
orrespondingto the 
hords of kT in C and b o

urs in an odd number of these fundamental 
ir
uits. Thatis, 3 holds.Lemma 3.30. Let kT be a seeded k-tree of a graph G. Let P be a path in G 
onne
ting twoseeds s1 and s2, i.e., P is a s1; s2-path. If P 
ontains no 
onne
tors of kT , then it must 
ontainat least one separator.
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Proof. Suppose P, whi
h has no 
onne
tors of kT , also does not have separators of kT . ThenP 
onsists only of 
hords and bran
hes of kT . Hen
e, by a reasoning similar to the one in theproof of Lemma 3.28, one has to 
on
lude that s2 belongs to the same 
omponent of kT as s1.But this is a 
ontradi
tion, sin
e kT respe
ts seed separation by hypothesis. Hen
e, there mustbe separators in P.
Lemma 3.31. Let kT be a seeded k-tree of a graph G. Let P be a path in G 
onne
ting twoseeds s1 and s2, i.e., P is a s1; s2-path. If b 2 P is a bran
h of kT , then either:1. there is a 
onne
tor 
 of kT in P; or2. b belongs to a fundamental path of some separator 
 of kT in P; or3. b belongs to the fundamental 
ir
uit of some 
hord 
 of kT in P.
Proof. If P 
ontains at least one 
onne
tor of kT , then 1 holds.If P does not 
ontain any 
onne
tors, then, by Lemma 3.30, it must 
ontain at least oneseparator of kT . Removal of the separators of kT from P segments the path into a series ofshorter paths ea
h inside a single 
omponent of kT . Bran
h b belongs to one of these segments.If bran
h b belongs to a segment of path P12 between two separators 
1 and 
2 of kT , then,using the same arguments as in the proof of Lemma 3.29, either b belongs to a fundamentalpath of one of the separators 
1; 
2 2 P, and 2 holds, or b belongs to a fundamental 
ir
uit ofsome 
hord 
 2 P12 � P, and 3 holds.Otherwise, b belongs to a segment P0 of path P between a seed si and a separator 
0. Thissegment 
ontains only bran
hes or 
hords of kT . Hen
e, it is 
ontained in the 
omponentkTi of kT to whi
h si belongs. Consider the restri
tion P00 of the fundamental path of kT
orresponding to 
0 to the 
omponent kTi. Clearly, P00 
ontains only bran
hes of kT . It is also
lear that both paths 
onne
t si and the end vertex vi of 
0 inside kTi. If b belongs to P00, then2 holds. Otherwise, b is in P0 � P00, whi
h, a

ording to Lemma 3.27, is a 
ir
uit or a sum of
ir
uits. Hen
e, b must be in the fundamental 
ir
uit of some 
hord 
 in P0 � P00. Sin
e P00
ontains only bran
hes of kT , 
 must belong to P0 and hen
e to P. That is, 3 holds.
Theorem 3.32. (bran
h, 
hord, 
onne
tor, and separator 
onditions) Let kT (V;As)be a spanning k-tree of graph G(V;A) respe
ting the set S = fs1; : : : ; sng � V of n seed verti
esof G. Consider the following statements:1. kT is a SSSkT of G.2. (bran
h 
ondition) w(b) � w(
) for any bran
h b of kT and for any 
hord 
 in the
orresponding fundamental 
utset relative to kT .3. (
hord 
ondition) w(b) � w(
) for any 
hord 
 of kT and for any bran
h b in the 
orre-sponding fundamental 
ir
uit relative to kT .4. (
onne
tor 
ondition) w(
) � w(b) for any bran
h b and for any 
onne
tor 
 of kT .5. (separator 
ondition) w(
) � w(b) for any separator 
 of kT and for any bran
h b in the
orresponding fundamental path relative to kT .If a seeded spanning k-tree kT is also a SSSkT, then bran
h, 
hord, 
onne
tor, and separator
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onditions are true for kT , i.e., 1) 2 ^ 3 ^ 4 ^ 5:On the other hand, the 
onne
tor and separator 
onditions together with either the bran
h orthe 
hord 
onditions are suÆ
ient to guarantee that a spanning k-tree is a SSSkT, i.e.,2 ^ 4 ^ 5) 1, and3 ^ 4 ^ 5) 1:
Proof. It will �rst be shown that 2 , 3. Then, it suÆ
es to show that 1 ) 3, 1 ) 4, 1 ) 5,and 3 ^ 4 ^ 5) 1.Let Gi be the subgraph of G indu
ed by the verti
es of the 
onne
ted 
omponent kTi of kT .2, 3, 1) 3, 1) 4: The arguments are similar to the ones used in the proof of Theorem 3.18.Noti
e that the derived spanning k-tree is still respe
ting of the set of seeds in all 
ases.1) 5 (or :5) :1): Let 
 be a separator of a seeded spanning k-tree kT andP its 
orrespondingfundamental path. If there is any b 2 P su
h that w(b) > w(
), then kT � b+ 
, whi
h is 
learlystill a seeded spanning k-tree of G, has a smaller weight than kT . Hen
e, kT 
annot be a SSSkT.3 ^ 4 ^ 5 ) 1: Assume 3, 4, and 5 hold for kT (V;As). Let kT 0(V;A0s) be a SSSkT of G, forwhi
h, as was already proven, 3, 4 and 5 hold. It will be shown that kT 0 
an be made equal tokT through a series of simple operations whi
h neither in
reases nor de
reases the total weightW (A0s; w). This proves that kT is indeed a SSSkT, sin
e W (As; w) =W (A0s; w).If kT and kT 0 are equal, then kT is also a SSkT. Suppose then that kT and kT 0 are di�erent.Sin
e kT and kT 0 are both spanning k-trees, both 
ontain the same number of ar
s of G:#As = #A0s. Hen
e, there is an equal non-zero number of ar
s in As nA0s and A0s nAs. Thear
s in A0s nAs are 
hords, 
onne
tors or separators of kT and bran
hes of kT 0 and vi
e versa.
i. Suppose there is a 
hord 
 of kT whi
h is also a bran
h of kT 0. Let C be the 
orrespondingfundamental 
ir
uit in kT . Sin
e 3 holds for kT , w(
) � w(b) for all b 2 C. By Lemma 3.29,either:1. there is a 
onne
tor b of kT 0 in C, in whi
h 
ase, sin
e 4 holds for kT 0, w(b) � w(
);2. 
 belongs to the fundamental path of some separator b of kT 0 in C, in whi
h 
ase,sin
e 5 holds for kT 0, w(b) � w(
); or3. 
 belongs to the fundamental 
ir
uit of some 
hord b of kT 0 in C, in whi
h 
ase, sin
e3 holds for kT 0, w(b) � w(
).In either 
ase, both w(
) � w(b) and w(
) � w(b), that is, w(b) = w(
) and kT 0 � 
 + b isstill a seeded spanning tree respe
ting the same set of seeds. That is, in either 
ase, thebran
h 
 of kT 0 
an be substituted by the bran
h b of kT in kT 0. Repeating this pro
esswhile there are bran
hes of kT 0 whi
h are 
hords of kT , su
h ar
s are eliminated from kT 0without 
hanging its global weight W (A0s; w).If kT 0 = kT after this pro
ess, then kT is indeed a SSSkT. If not, then there must be somebran
h b of kT whi
h is not in kT 0 and vi
e versa.
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ii. Suppose there is a bran
h b of kT whi
h is also a 
hord of kT 0. Let C0 be its 
orrespond-ing fundamental 
ir
uit in kT 0. Sin
e 3 holds for kT 0, w(b) � w(
) for all 
 2 C0. ByLemma 3.29, either:1. there is a 
onne
tor 
 of kT in C0, in whi
h 
ase, sin
e 4 holds for kT , w(
) � w(b);2. b belongs to the fundamental path of some separator 
 of kT in C0, in whi
h 
ase,sin
e 5 holds for kT , w(
) � w(b).Noti
e that 
ase 3 of Lemma 3.29 
annot happen, sin
e all bran
hes of kT 0 whi
h are 
hordsof kT have already been removed (see step i. above).In either 
ase, both w(b) � w(
) and w(b) � w(
), that is, w(b) = w(
) and kT 0 � 
 + b isstill a seeded spanning tree respe
ting the same set of seeds. That is, in either 
ase, thebran
h 
 of kT 0 
an be substituted by the bran
h b of kT in kT 0. Repeating this pro
esswhile there are bran
hes of kT whi
h are 
hords of kT 0, su
h ar
s are introdu
ed into kT 0without 
hanging its global weight W (A0s; w).If kT 0 = kT after this pro
ess, then kT is indeed a SSSkT. If not, then there must be somebran
h b of kT whi
h is not in kT 0 and vi
e versa.iii. Suppose there is some separator 
 of kT whi
h is also a bran
h of kT 0. Let P be its
orresponding fundamental path in kT . Sin
e 5 holds for kT , w(
) � w(b) for all b 2 P.By Lemma 3.31, either:1. there is a 
onne
tor b of kT 0 in P, in whi
h 
ase, sin
e 4 holds for kT 0, w(b) � w(
);2. 
 belongs to the fundamental path of some separator b of kT 0 in P, in whi
h 
ase,sin
e 5 holds for kT 0, w(b) � w(
).Noti
e that 
ase 3 of Lemma 3.31 
annot happen, sin
e all bran
hes of kT whi
h are 
hordsof kT 0 have already been removed (see step ii. above).In either 
ase, both w(
) � w(b) and w(
) � w(b), that is, w(b) = w(
) and kT 0 � 
 + b isstill a seeded spanning tree respe
ting the same set of seeds. That is, in either 
ase, thebran
h 
 of kT 0 
an be substituted by the bran
h b of kT in kT 0. Repeating this pro
esswhile there are bran
hes of kT 0 whi
h are separators of kT , su
h ar
s are eliminated fromkT 0 without 
hanging its global weight W (A0s; w).If kT 0 = kT after this pro
ess, then kT is indeed a SSSkT. If not, then there must be somebran
h b of kT whi
h is not in kT 0.iv. Suppose there is some bran
h b of kT whi
h is also a separator of kT 0. Let P0 be its
orresponding fundamental 
ir
uit in kT 0. Sin
e 5 holds for kT 0, w(b) � w(
) for all 
 2 P0.By Lemma 3.31:1. there is a 
onne
tor 
 of kT in P0, in whi
h 
ase, sin
e 4 holds for kT , w(
) � w(b);Noti
e that 
ase 3 of Lemma 3.31 
annot happen, sin
e all bran
hes of kT 0 whi
h are 
hordsof kT have already been removed (see step i. above). Also, 
ase 2 of Lemma 3.31 
annothappen, sin
e all bran
hes of kT 0 whi
h are separators of kT have already been removed(see step iii. above).In either 
ase, both w(b) � w(
) and w(b) � w(
), that is, w(b) = w(
) and kT 0 � 
 + b isstill a seeded spanning tree respe
ting the same set of seeds. That is, in either 
ase, thebran
h 
 of kT 0 
an be substituted by the bran
h b of kT in kT 0. Repeating this pro
ess
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while there are bran
hes of kT whi
h are separators of kT 0, su
h ar
s are eliminated fromkT 0 without 
hanging its global weight W (A0s; w).If kT 0 = kT after this pro
ess, then kT is indeed a SSSkT. If not, then there must be somebran
h b of kT whi
h is not in kT 0.v. At this point, if b is a bran
h of kT whi
h is not in kT 0, then b is a 
onne
tor of kT 0, sin
eall bran
hes of kT whi
h were 
hords and separators of kT 0 have been eliminated in steps ii.and iv. Conversely, if 
 is a bran
h of kT 0 whi
h is not in kT , then 
 is a 
onne
tor of kT ,sin
e all bran
hes of kT 0 whi
h were 
hords and separators of kT have been eliminated insteps i. and iii. Moreover, for ea
h b as stated, there is a 
 (remember that kT and kT 0 havethe same number of ar
s). Thus, both w(
) � w(b) and w(b) � w(
), i.e., w(
) = w(b).Also, kT 0 � 
 + b is still a seeded spanning tree respe
ting the same set of seeds. That is,the bran
h 
 of kT 0 
an be substituted by the bran
h b of kT in kT 0. Repeating this pro
esswhile there are bran
hes of kT whi
h are 
onne
tors of kT 0, su
h ar
s are eliminated fromkT 0 without 
hanging its global weight W (A0s; w).

After all the above steps, it is obvious that kT 0 = kT . Hen
e, sin
e the weight of kT 0 never
hanged along the pro
ess, kT is indeed a SSSkT of G.Corollary 3.33. A SSSkT is also a SSSSkT i� it has no 
onne
tors and the 
hord (or bran
h)and separator 
onditions hold (see Theorem 3.32).
Proof. The result is immediate from Theorems 3.8 and 3.32.Theorem 3.34. If kT (V;As) is a SSSkT of graph G(V;A) and 
 is a 
onne
tor of kT withminimum weight, then kT + 
 is a SSSk � 1T of G.
Proof. Let C be the set of 
onne
tors of kT , whi
h by hypothesis is not empty (otherwise therewould be no 
). Sin
e 
 is a minimum weight 
onne
tor, then w(
) � w(
0) 8
0 2 C n f
g.It is 
lear, from the proof of Theorem 3.9, that k�1T 0 = kT + 
 is a seeded spanning k � 1-treeof G respe
ting the same set of seeds. Hen
e, by Theorem 3.32, it suÆ
es to show that bran
h,
onne
tor, and separator 
onditions hold for k�1T 0 in order to prove that k�1T 0 is indeed aSSSk � 1T.Sin
e 
 is a 
onne
tor of kT , it has end verti
es in two di�erent 
omponents of kT , say kTi andkTj , with i 6= j. Let Cij be the set of 
onne
tors between these two 
omponents. Let k�1T 0ijbe the union of kTi with kTj through 
 in k�1T 0. The set Cij is 
learly the fundamental 
utset
orresponding to the bran
h 
 in k�1T 0. Sin
e 
 is a minimum weight 
onne
tor of kT and allar
s in Cij are 
onne
tors of kT , it is 
lear that the bran
h 
ondition is valid for bran
h 
 ink�1T 0.The ar
s in Cij n f
g are 
learly all 
hords of k�1T 0, in parti
ular of 
omponent k�1Tij . Sin
ethese ar
s are also 
onne
tors of kT , whi
h is a SSSkT, then w(
) � w(b) 8
 2 Cij and 8b 2 As,and hen
e for all bran
hes b in kTi and kTj . It is 
lear, then, that the fundamental 
utsets ofk�1T 0ij also ful�ll the bran
h 
ondition, sin
e all the new 
hords are heavier than all bran
hes of



60 CHAPTER 3. GRAPH THEORETIC FOUNDATIONS FOR IMAGE ANALYSISk�1T 0ij , and the old 
hords already ful�lled the bran
h 
ondition in kT , given that it is a SSSkT.All the other 
omponents of kT are una�e
ted, and hen
e also ful�ll the bran
h 
ondition.The 
onne
tor 
ondition is also ful�lled for k�1T 0, sin
e there is only one new bran
h, 
, whi
hwas 
hosen a minimum weight 
onne
tor of kT , and the 
onne
tors of k�1T 0 are C nCij minuspossibly some new separators (see below).It remains to 
he
k whether the separator 
ondition still holds. It is 
lear that separators ofkT are also separators of k�1T 0 with the same fundamental paths. Sin
e kT is a SSSkT, theseparator 
ondition holds for the separators of k�1T 0 whi
h already were separators of kT .However, the union of kTi with kTj through 
 may have 
reated some new separators.If both kTi and kTj are seedless in kT , then no new separators were 
reated, and hen
e theseparator 
ondition holds for k�1T 0.Otherwise, only one of kTi and kTj may have 
ontained a seed. Without loss of generality,suppose it is kTi. Then all 
onne
tors of kTj , whi
h is seedless in kT , to some seeded 
omponentof kT will be
ome separators. But, sin
e these 
onne
tors of kT ful�ll the 
onne
tor 
ondition,they are heavier than any bran
h in kT . Hen
e, they are also heavier than any bran
h in their
orresponding fundamental paths in k�1T 0. Hen
e, the separator 
ondition holds for k�1T 0.Corollary 3.35. All SSSkT whi
h are not smallest are subgraphs of some SSSk � 1T.
Proof. By Theorem 3.8, there must be at least one 
onne
tor in kT . The result is immediatefrom Theorem 3.34.Theorem 3.36. If kT (V;As) is a SSSkT of graph G(V;A) and b is a bran
h of kT withmaximum weight, then kT � b is a SSSk + 1T of G for the same set of seeds.
Proof. By hypothesis As is not empty (otherwise there would be no b). Sin
e b is maximum,i.e., b = argmaxa2As w(a), it is 
lear that w(b) � w(b0) 8b0 2 As.It is also 
lear, from Theorem 3.10, that k+1T 0 = kT � b is a seeded spanning k+1-tree of G forthe same set of seeds. Hen
e, by Theorem 3.32, it suÆ
es to show that the bran
h, 
onne
tor,and separator 
onditions hold for k+1T 0 in order to prove that k+1T 0 is indeed a SSSk + 1T.Let C be the fundamental 
utset of kT relative to b. It 
onsists of one bran
h, b, and theremaining ar
s C n fbg are 
hords. When b is removed from kT , the ar
s in C, in
luding thebran
h b, 
hange its role to 
onne
tors, sin
e at most one of the resulting 
onne
ted 
omponentsis seeded. The bran
h 
ondition must still be true, sin
e the only 
hange to remaining bran
hesis that they may have lost some 
hords in their fundamental 
utsets.The 
onne
tor 
ondition holds for the 
onne
tors of kT , whi
h are also 
onne
tors of k+1T 0,sin
e the only 
hange was the disappearan
e of b. Sin
e b, now a 
onne
tor, was 
hosen asa maximum weight bran
h of kT , the 
onne
tor 
ondition holds for b. It remains to be seenthat the 
hords in C n f
g are indeed not lighter than any remaining bran
h. Sin
e the bran
h
ondition holds for kT , w(b) � w(
) 8
 2 C n fbg. But b was 
hosen su
h that w(b) � w(b0)8b0 2 As. Hen
e, w(
) � w(b) 8b 2 As and 8
 2 C n fbg.
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The only further 
hange to the 
lass of ar
s is that some separators in kT may have 
hanged to
onne
tors in k+1T 0. Let k+1T 0i and k+1T 0j be the two 
omponents whi
h resulted from removingb from its 
omponent kTl in kT .If kTl is seedless, so are k+1T 0i and k+1T 0j , and no separators 
hanged to 
onne
tors.Otherwise, suppose, without loss of generality, that k+1T 0i 
ontains the seed of kTl. Then,separators 
onne
ting to verti
es in k+1T 0j are now 
onne
tors. The fundamental paths of theseseparators all in
luded the bran
h b, sin
e there is only one path between two verti
es in a treeand the seed is on k+1T 0j . Sin
e these separators ful�lled the separator 
ondition, and sin
e bis a maximum weight bran
h of kT , it is obvious that the new 
onne
tors are heavier than anybran
h in k+1T 0. Hen
e, the 
onne
tor 
ondition holds for k+1T 0.The separators of kT whi
h are also separators of k+1T 0 maintain their fundamental paths.Hen
e, the separator 
ondition holds for k+1T 0.Corollary 3.37. Every SSSkT of a graph G(V;A) has a subgraph whi
h is a SSSk+ 1T of Gwith the same set of seeds, provided that k < #V.
Proof. Sin
e k is smaller than the number of verti
es of G, there must be at least one bran
hin kT . Hen
e, it suÆ
es to 
hoose the bran
h with maximum weight and remove it from theoriginal SSSkT. The result, by Theorem 3.36, is a SSSk+1T of G with the same set of seeds.Theorem 3.38. All SSSkT of a graph are subgraphs of some SSSSk0T of the same graph withthe same set of seeds.
Proof. Let kT be a SSSkT of a graph G with 
 
onne
ted 
omponents and 
0 seedless 
onne
ted
omponents. Let kT respe
t a set of n seeds. A

ording to Theorem 3.6, any SSSSk0T of G hask0 = n+
0. Clearly, k � k0. If Theorem 3.34 is applied su

essively to kT , thereby 
onstru
ting asequen
e kT ; k�1T ; : : : ; n+
0T by insertion at ea
h step of a lightest 
onne
tor, the �rst elementof the sequen
e, kT , is a subgraph of the last element of the sequen
e, n+
0T = k0T , whi
h is aSSSSk0T.Theorem 3.39. All SSSSkT of a graph G(V;A) have subgraphs whi
h are SSSk0T of G withthe same set of n seeds, provided that k � k0 � #V.
Proof. From a SSSSkT kT , it is obvious that, by su

essive removal of a heaviest bran
h, one
an build a sequen
e kT ; k+1T ; : : : ; k0T whose elements are all subgraphs of kT , and all shortest,a

ording to Theorem 3.36. Hen
e, element k0T is a SSSk0T as required.Lemma 3.40. Let F be a spanning forest of a graph G. Let v1 and v2 be two di�erent but
onne
ted verti
es of G. Let P be the v1; v2-path in F . If b is a bran
h of F whi
h is also inP and 
 a 
hord in its fundamental 
utset, then the ring sum of the ar
s in P with the ar
sin the fundamental 
ir
uit C asso
iated with 
 is the unique v1; v2-path in the spanning forestF � b+ 
.
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Proof. First noti
e that b belongs to both P and C, and that 
 belongs to C but not to P,sin
e P 
ontains only bran
hes of F . Also noti
e that F � b+ 
 is still a spanning forest of G.Let va be the �rst vertex in C found when s
anning all verti
es of P starting from v1. Similarly,let vb be the �rst vertex in C found when s
anning all verti
es of P starting from v2.Suppose va = vb. Sin
e paths have no repeated verti
es, this implies that P and C tou
h onlyat a single vertex, and hen
e do not have 
ommon ar
s, whi
h 
annot happen by hypothesis,sin
e b is a 
ommon ar
. Hen
e, va 6= vb.The two verti
es va and vb divide 
ir
uit C into two segments C1 and C2, ea
h a disjointva; vb-path. The 
hord 
 either belongs to C1 or C2. Suppose, without loss of generality, thatit belongs to C2. Then, C1 is 
omposed solely of bran
hes of F : it is the va; vb-path in F .Similarly, the two verti
es va and vb divide path P into three segments, all ar
-disjoint pathsin F : the v1; va-path P1a, the va; vb-path Pab, and the vb; v2-path Pb2. It is obvious, then, thatPab = C1, sin
e paths are unique in forests, by Theorem 3.2. It is also 
lear that P1a \C2 =P2b \C2 = ;, by sele
tion of v1 and v2. Thus, P \C = C1 and b 2 C1.The ring sum of P and C is thus,P�C == (P [C) n (P \C)= (P1a [Pab [Pb2 [C2) n (Pab)= P1a [Pb2 [C2;whi
h is obviously a v1; v2-path. This path is 
omposed solely of bran
hes of F ex
ept for one
hord, 
 2 C2, and it does not 
ontain bran
h b 2 C1. Hen
e, this path belongs to the spanningforest F � b+ 
.Theorem 3.41. Let F(V;As) = 
T (V;As) be the SSF of a graph G(V;A) with 
 
onne
ted
omponents, and let S be a set of n seed verti
es. Suppose there are 
0 seedless and 
00 seeded
onne
ted 
omponents of G, i.e., 
 = 
0 + 
00. A SSSSkT, with k = n + 
0, may be obtained bysu

essively removing from F a set of k � 
 = n+ 
0 � 
 = n� 
00 bran
hes 
hosen so that ea
his, at its step, the heaviest bran
h on all possible paths in the k-tree between pairs of di�erentseeds.
Proof. It will be proved that the 
hosen bran
hes lead to a set of separators whi
h ful�ll theseparator 
ondition.If 
00 = n, then the seeds are already separated, and the SSF F is indeed a SSSSkT of G, sin
ethere is no spanning k0-tree with a smaller k0 nor a spanning k tree with a smaller weight.Assume that the set of seeds S is initially partitioned into subsets S = S1 [ � � � [ S
, ea
h
ontaining the seeds in 
onne
ted 
omponent Gi of G. Clearly Si = ; if Gi is a seedless 
omponentof G, and hen
e there are 
0 empty sets Si. Let Fi be the 
onne
ted 
omponent of F 
overingGi. When the heaviest bran
h in any path between two seeds is removed from F , it is removedfrom one of its 
omponents, say Fi. Hen
e, Fi is separated into two 
onne
ted 
omponents,ea
h 
ontaining a non-empty set of seeds. The subset Si of S 
an be split into the 
orresponding
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seeds. This pro
ess ends when all sets in the partition of S, ea
h 
orresponding to a tree, 
ontaineither zero or one seed. The number of seedless Si does not 
hange while bran
hes are removed.Hen
e, the �nal number of trees is 
0 + n, as required. Sin
e initially there were 
 
onne
ted
omponents and a 
onne
ted 
omponent is added for ea
h removed bran
h, the total numberof removed bran
hes is 
0 + n� 
 = n� 
00. For ea
h 
omponent Fi of F with ni seeds, exa
tlyni � 1 bran
hes are removed so as to separate its seeds. Hen
e, attention 
an be 
on
entratedon ea
h 
omponent at a time. The removal of the bran
hes as stated indeed leads to a n-seedrespe
ting spanning 
0 + n-tree of G. It remains to be seen whether it is shortest.Let Fi be a 
omponent of F 
ontaining ni > 1 seeds. Clearly, ni � 1 bran
hes will be removedfrom Fi. Sin
e Fi is a SST of the 
orresponding 
onne
ted 
omponent Gi of G, see Corollary 3.14,the 
hords of Fi in Gi ful�ll the 
hord 
ondition. When the heaviest bran
h b in any path betweenseeds in Fi is removed, it be
omes a 
onne
tor of the spanning 2-tree obtained, the same thinghappening with all the 
hords in the 
orresponding fundamental 
utset. All these 
onne
tors
onne
t seeded trees, and hen
e, even though ea
h of the resulting trees may have more thanone seed, they are separators. A
tually, they will be separators in the �nal ni-tree 
overingFi. Sin
e b is the heaviest bran
h in any path between two seeds in Fi, it ful�lls the separator
ondition for whatever resulting �nal partition of seeds among the trees.Consider now a 
hord 
 in the fundamental 
utset of b, C its fundamental 
ir
uit, and 
onsideralso any path P between two seeds of Fi whi
h 
ontains b. By Lemma 3.40, C�P is the pathbetween the same two seeds in F � b + 
. Sin
e w(
) � w(b0) for all b0 2 C (
hord 
onditionis ful�lled for Fi), w(b) � w(b00) for all b00 2 P (by sele
tion of b), and b is 
ommon to C andP, then w(
) � w(b00) for all b00 2 P. Sin
e this happens for all paths, 
 ful�lls the separator
ondition for whatever resulting �nal partition of seeds among the trees.Hen
e, by repeating the above arguments for any 
omponent trees with more than two seeds, itis 
lear that the removal of the sele
ted bran
hes leads to a n-seed respe
ting spanning 
0 + n-tree whi
h ful�lls the 
hord, 
onne
tor and separator 
onditions (the 
onne
tor 
ondition isful�lled trivially sin
e there are no 
onne
tors in the �nal seeded 
0 + n-tree), and hen
e, byCorollary 3.33, it is a SSSS
0 + nT.
Theorem 3.42. Let kT (V;As) be the SSSSkT of a graph G(V;A) with 
 
onne
ted 
om-ponents, respe
ting the set S of n seed verti
es. Suppose there are 
0 seedless and 
00 seeded
onne
ted 
omponents of G, i.e., 
 = 
0+ 
00. A SSF of G may be obtained by su

essively addingto kT a set of k � 
 = n + 
0 � 
 = n � 
00 separators 
hosen so that ea
h is, at its step, thelightest 
onne
tor of any two trees in the 
urrent forest.
Proof. It is 
lear that after k � 
 insertions of new bran
hes into the forest whi
h initially iskT , with k 
omponents, the resulting forest has k � k + 
 = 
 
omponents as required. Thatthis is possible is evident, sin
e G has 
 
omponents and thus is spannable by a forest with 

omponents.It remains to be seen whether the �nal spanning forest F ful�lls the 
hord 
ondition.The 
hords of kT are 
learly also 
hords of F with the same fundamental 
ir
uit. Sin
e, byTheorem 3.33, they ful�ll the 
hord 
ondition in kT , they also ful�ll it in F .
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Ea
h time a separator 
 is introdu
ed to the forest, it be
omes a bran
h whose fundamental
utset 
orresponds to the other separators 
0 
onne
ting the two trees 
onne
ted by 
. Bysele
tion, w(
0) � w(
). Let P and P0 be the fundamental paths asso
iated to 
 and 
0 in kT .Then, w(
) � w(b) for all b 2 P and w(
0) � w(b) for all b 2 P0. By Lemma 3.27, P � P0,whi
h 
annot be empty sin
e 
0 62 P and 
 62 P0, is a 
ir
uit or a sum of ar
-disjoint 
ir
uits.Sin
e P�P0 
ontains a single 
hord, it 
an only 
ontain one 
ir
uit, sin
e otherwise there wouldbe a 
hordless 
ir
uit in the forest. This 
ir
uit is the fundamental 
ir
uit of 
0 and, from therelations above, w(
0) � w(b) for all b 2 P � P0. Hen
e, when a new bran
h is introdu
ed asspe
i�ed, the 
orresponding new 
hords ful�ll the 
hord 
ondition. Hen
e, by Theorem 3.11,the �nal spanning forest is indeed a SSF of G.
AlgorithmsThere are essentially two types of algorithms for �nding a SSSkT of a graph, as was hintedbefore: 
onstru
tive algorithms and destru
tive algorithms. The problem of �nding a SSSSkTof a graph is a parti
ular 
ase where k = n+ 
0, 
0 being the number of seedless 
omponents ofthe graph and n the number of seeds.
Constru
tive algorithmsTwo basi
 
onstru
tive algorithms 
an be developed for �nding the SSSSkT of a graph. Bothare based on Kruskal and Prim, and 
an be proven 
orre
t using the following theorem:Theorem 3.43. Let G0(V0;A0) be the extension of a graph G(V;A) with an asso
iated setof n > 0 seed verti
es S = fs1; : : : ; sng, su
h that V0 = V [ fveg and A0 = A [ Ae, withAe = Sni=1faeig, where ve is an extra, external vertex, and aei are extra ar
s, 
onne
ting theextra vertex to ea
h seed vertex, i.e., g(aei) = fve; sig. Let the weight of the extra ar
s be stri
tlysmaller than any other ar
 in the graph, i.e., w(aei) < w(a) for all a 2 A with i = 1; : : : ; n. Ifthe forest F 0(V0;A0s) is a SSF of G0, then F 0 � ve is a SSSSkT of G for the given set of seeds.
Proof. The ar
s of G0 in Ae, i.e., the extra ar
s, must be bran
hes of F 0. Suppose that there isan ar
 aei whi
h is not a bran
h of F 0, i.e., it is a 
hord of F 0. Let C be its fundamental 
ir
uit.C 
annot 
onsist only of ar
s in Ae, sin
e by 
onstru
tion all ar
s in Ae 
onne
t to a di�erentseed. Let then b be a bran
h of F 0 in C whi
h is an ar
 of G. By hypothesis w(b) > w(aei),and, by the 
hord 
ondition for SSF in Theorem 3.11, w(b) � w(aei). This is a 
ontradi
tion.Hen
e, aei is a bran
h of F 0.The removal of ve from F 0 also removes all bran
hes of F 0 that are in
ident on ve, i.e., the nar
s in Ae. Hen
e, F 0� ve 
ontains only verti
es and bran
hes of G. Sin
e V0 = V[ ve, F 0� ve
ontains all verti
es of G, hen
e, F 0�ve spans G. Sin
e F 0 is a forest, and hen
e a
y
li
, F 0�vemust also be a
y
li
. Hen
e, F 0 � ve is a spanning forest of G.It is 
lear that, if G has 
 = 
0 + 
00 
onne
ted 
omponents, of whi
h 
0 are seedless and 
00 areseeded, G0 has 
0+1, sin
e all seeded 
onne
ted 
omponents are 
onne
ted through the extra ar
sin Ae to one another. By de�nition of spanning forest, F 0 has also 
0+1 
onne
ted 
omponents.



3.3. GRIDS, GRAPHS, AND TREES 65
The removal of ea
h ar
 in Ae from F 0 in
reases the number of 
onne
ted 
omponents by one,hen
e F 0 � ae1 � � � � � aen has 
+ 1 + n 
onne
ted 
omponents. Finally, removal of ve redu
esthe number of 
onne
ted 
omponents by one, that is, F � ve has 
0 + n 
onne
ted 
omponents,and spans the graph G. Hen
e, it is a spanning n+ 
0-tree of G.Suppose there is a si; sj-path P between to seeds si and sj of S in F 0 
ontaining only ar
s ofG. Then, P; aej ; ve; aei ; si is 
learly a 
ir
uit in F 0, whi
h is a 
ontradi
tion, sin
e F 0 is a forestand hen
e a
y
li
. This proves that all paths between seeds must pass though the vertex ve andtwo extra ar
s. That is, F � ve respe
ts seed separation. Hen
e, F � ve is a n-seed respe
tingspanning n + 
0-tree of graph G with seeds S. It is also smallest, by Theorem 3.6, sin
e it hasthe right number of 
onne
ted 
omponents, and thus, by Theorem 3.8, it has no 
onne
tors.It remains to be seen whether it is a SSSSkT. By Corollary 3.33, if F 0 � ve ful�lls the 
hordand separator 
onditions, then indeed it is a SSSSkT.Let 
 be a 
hord of F 0. If its fundamental 
ir
uit in
ludes only ar
s of G, this 
ir
uit will remainunaltered in F � ve. Hen
e, 
 is also a 
hord of F 0 � ve. Sin
e, by Theorem 3.11 the 
hord
ondition holds for all 
hords of F 0, it also holds for 
.Let 
 be a 
hord of F 0. If its fundamental 
ir
uit in
ludes any of the extra ar
s, then it 
annotbe a 
hord of F 0 � ve. Hen
e, it must be a separator. Let C be the fundamental 
ir
uit of 
 inF 0. It is straightforward to see that 
ir
uit C in
ludes exa
tly two ar
s of Ae, whi
h besides arein su

ession. Hen
e, 
ir
uit C 
orresponds in F 0� ve to the fundamental path of 
, 
onne
tingtwo di�erent seeds. Sin
e the 
hord 
ondition holds for F 0, again by Theorem 3.11, w(
) � w(a)for all a 2 C and hen
e also in the fundamental path of 
 in F 0 � ve.Sin
e both 
hord and separator 
onditions hold for F 0 � ve, it is indeed a SSSSkT.
Suppose this theorem is used to develop a simple algorithm: build the SSF of the extendedgraph, using Kruskal's or Prim's algorithms, and then remove the extra vertex ve. Assume theinitial vertex in Prim's algorithm is the extra vertex ve. In both 
ases, it is straightforward tosee that the �rst n ar
s introdu
ed into the forest are the extra ar
s. Sin
e all seeds, after the�rst n steps of ea
h algorithm, are 
onne
ted through ve, bran
hes whi
h would 
onne
t two
onne
ted 
omponents with di�erent seeds in F � ve are automati
ally forbidden, sin
e theyare 
hords of F 0, i.e., they would introdu
e 
ir
uits in F 0.In the 
ase of the Kruskal algorithm, this amounts to extending the basi
 algorithm so that only
onne
tors, and not separators, are 
onsidered as 
andidate bran
hes. At ea
h step, the forestobtained is a SSSkT of the graph, by Theorem 3.34. This, of 
ourse, requires that separatorsare somehow distinguished from 
onne
tors. This 
an be done by labeling the verti
es a

ordingto the seed of the 
omponent they belong to. It simply requires running a DFS (linear in thenumber of verti
es) to label the unlabeled 
omponent of two 
omponents 
onne
ted through anew bran
h. If the two 
omponents 
onne
ted are unlabeled, nothing needs to be done. Theoverall time spent in labeling is asymptoti
ally linear on the number of bran
hes, and hen
eon the number of verti
es, i.e., O(#V). In total, sin
e only unlabeled verti
es are labeled, #Vverti
es are labeled. The running time of the algorithm thus does not 
hange asymptoti
ally.
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In the 
ase of the Prim algorithm, this amounts to extending the basi
 algorithm so that initiallythere are n seeds instead of a single one. Sin
e the forest grows from seeds one vertex at a time,it is a simple matter to propagate seed labels along the verti
es of ea
h 
onne
ted 
omponent(a di�erent label for ea
h seed) so as to eliminate from 
onsideration ar
s 
onne
ting verti
eswith di�erent labels. The reason for the use of the name \seed" for the verti
es that must bekept separate should now be 
lear. In this extension of the Prim algorithm, the set of sele
tedbran
hes at ea
h step 
onstitutes a forest with n trees. Hen
e, 
0+1 iterations of the algorithmare required, 
0 using the simple version of the algorithm for ea
h seedless 
omponent of thegraph and another using the n seeds whi
h 
over the remaining seeded 
omponents. The sameresult may be obtained in a single iteration by inserting one �
titious seed in ea
h seedless
omponent of the graph. Unlike what happens with the Kruskal extension for seeded k-trees,this extension of the Prim algorithm, though leading to a SSSSkT of the graph, does not havethe ni
e property of all intermediate forests being SSSkTs.Both algorithms are important be
ause of their uses in segmentation. Even though the issueof segmentation will be dealt with within Chapter 4, it may be advan
ed here that Prim'salgorithm is used mostly in region growing segmentation algorithms and Kruskal' algorithm isused mostly in region merging with seeds segmentation algorithms, and that, although bothalgorithms lead to SSSSkTs, their extensions by globalizing information have vastly di�erentproperties.
Destru
tive algorithms
Destru
tive algorithms start by building a SSF of the graph. Then, following Theorem 3.41,a SSSSkT 
an be obtained by 
utting appropriately 
hosen bran
hes of the forest. Curiouslyenough, the same method 
an be used, a

ording to Theorem 3.24, to obtain a SSkT of thegraph. The only di�eren
e between destru
tive algorithms for �nding SSSSkTs or SSkTs iswhi
h bran
h to 
ut at ea
h step of the algorithm: for unseeded trees the heaviest among allforest bran
hes is 
hosen, while for seeded trees the heaviest of those bran
hes whose removalseparates seeds is 
hosen. Sin
e destru
tive algorithms su

essively remove bran
hes from aforest, ea
h time separating a 
onne
ted into two new 
onne
ted 
omponents, these algorithms,in the framework of image segmentation, are some times 
alled region splitting algorithms, seeChapter 4.If the Kruskal algorithm is used to build the SSF, sin
e it inserts forest bran
hes of non-de
reasing weight, a list of the bran
hes of the forest sorted by non-in
reasing order may be builtwithout 
hanging the asymptoti
 behavior of the algorithm. Hen
e, it will run in O(#A lg#A).Sele
tion of the heaviest bran
hes then takes linear time, that is O(k� 
), sin
e k� 
 bran
hesmust be removed from the sorted list, ea
h removal taking a 
onstant time.If the Prim algorithm is used, a priority queue 
an be used to insert the bran
hes of the forest.If Fibona

i priority queues are used, then ea
h insertion requires O(1) amortized time, so thatthe queue takes linear time, on #As = #V � 
, to build (see [28℄ for details). Hen
e, runningPrim and building the queue still takes O(#A+#V lg#V). Sele
tion of the heaviest bran
hesthen takes O�(k � 
) lg(#V � 
)�, sin
e k � 
 bran
hes must be removed, one at a time, fromthe queue, ea
h removal taking O�lg(#V� 
)�, #V � 
 being the size of the queue.
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This was in the 
ase of the SSkT. The sele
tion of the bran
hes to remove in the 
ase of theSSSSkT is more involved, sin
e only those bran
hes whi
h stand in the path between two seedsshould be taken into a

ount. The following theorem will be used to build an algorithm whi
hsolves the problem in linear time, provided a list of bran
hes sorted by non-de
reasing weight isavailable, as in the 
ase of the Kruskal algorithm for the destru
tive 
onstru
tion of a SSkT froma SSF above. Even though there may be more eÆ
ient algorithms, this proves that linear timealgorithms do exist, whi
h means that, if several di�erent sets of seeds are to be experimentedin building SSSSkTs, the SSF 
an be built on
e, followed by su

essive appli
ations of anasymptoti
ally linear time algorithm. If the number of experiments with sets of seeds is highenough, the overall eÆ
ien
y approximates linear time asymptoti
ally. That is, the algorithmruns in asymptoti
ally linear amortized time.Theorem 3.44. Let F be the SSF of a graph G. If kT is a SSSSkT of F , then kT is also aSSSSkT of G.
Proof. Clearly, kT has no 
hords in F , sin
e F is a
y
li
. But kT may have separators (not
onne
tors, sin
e it is smallest). Suppose F has #V verti
es and 
 
onne
ted 
omponents.Suppose 
0 of them are seedless. It is known that k = n + 
0, where n is the number of seeds.Also, the number of ar
s in kT is #V� n� 
0 and the number of ar
s in F is #V� 
. Hen
e,there are n+
0�
 = n�
00 separators of kT in F , where 
00 is the number of seeded 
omponentsof F .It is also 
lear that kT spans G, is a
y
li
, does not violate seed separation, and has the rightnumber of 
onne
ted 
omponents to be smallest.The separators of kT in F are also separators of kT in G. Hen
e, they ful�ll the separator
ondition. The ar
s of G whi
h are not bran
hes of F , i.e., 
hords of F , are either 
hords orseparators of kT .If their fundamental 
ir
uit C in F in
ludes a bran
h of F whi
h is a separator of kT , thenthey are themselves separators, sin
e they introdu
e no 
ir
uit in kT .Take one su
h separator 
 of kT . Sin
e it is also a 
hord of F , it must ful�ll the 
hord 
onditionfor SSFs, that is w(
) � w(b) for all bran
hes b of F in C, in
luding the separators of kT . Thefundamental path of 
 in kT is, by Lemma 3.40 (remember that 
 is in the fundamental 
utsetsof all bran
hes of its 
ir
uit), the ring sum of the path P between the two seeds in F and the
ir
uit C. Sin
e the fundamental path in
ludes a single separator, 
, all bran
hes of F whi
hare separators of kT in C must also be in P. Hen
e, using Lemma 3.31, it must be 
on
ludedthat all ar
s in P are lighter than the heaviest separator in P, and hen
e 
 is heavier than anybran
h of kT in its fundamental path. Hen
e, kT ful�lls the separator 
ondition.Let 
 now be a 
hord of F su
h that its fundamental 
ir
uit does not in
lude any separator ofkT . Then 
 is also a 
hord of kT and obviously ful�lls the 
hord 
ondition.Hen
e, kT is indeed a SSSSkT of G.
The Kruskal algorithm, with the seed extensions des
ribed previously, 
an thus be used to
al
ulate the SSSSkT of the SSF, and 
onsequently of the graph. However, noti
e that:
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1. there is no need to initially sort the bran
hes of F , sin
e, by hypothesis, a sorted list isalready available.2. there is no need to test whether an ar
 introdu
es a 
ir
uit or not, sin
e F has no 
ir
uits.The analysis of the Kruskal algorithm with the above simpli�
ations reveals that it runs indeedin linear time, i.e., O(#V).

Further notes on trees and algorithmsThere are some issues regarding shortest spanning (k-) trees and forests whi
h should be men-tioned here. The �rst has to do with the uniqueness of the solutions. In general, none of theproblems dis
ussed so far (SSF, SSkT, SSSkT, SSSSkT) has a unique solution. It 
an be provedthat, if all ar
 weights are di�erent, then solutions are always unique, but this is a rather 
on-servative 
ondition. Less 
onservative 
onditions of uniqueness 
an be developed in ea
h 
ase,but this will not be attempted here. The 
onsequen
es of non-uniqueness and ways of dealingwith the issue will be dis
ussed in Chapter 4, in the framework of a parti
ular appli
ation:segmentation for image analysis.Se
ondly, it must be pointed out that in all 
onstru
tive algorithms the addition of a bran
h tothe growing forest 
an be followed by a 
ontra
tion of that bran
h in the original graph, followedpossibly by removal of self-
onne
ting ar
s (whi
h in the un
ontra
ted graph are 
hords). Thisresults in 
ontra
tion of the verti
es 
onne
ted by a tree in the evolving forest to a singlerepresentative vertex. The remaining ar
s of the graph retain their properties, and hen
e thealgorithms run exa
tly in the same manner with and without 
ontra
tion. The proof of this fa
tis simple and will not be given here. Su
h 
ontra
tions may be very useful, sin
e they allow ea
h
omponent of the evolving forest, a segment or 
lass or region in the framework of segmentation,to be represented by a single vertex, hen
e simplifying possible region globalization pro
esses. Inthe 
ase of 2D maps, as will be seen in Se
tion 3.5, su
h simpli�
ations of the map graph 
an bea

ompanied by dual 
hanges in the border pseudograph, whi
h may be useful for globalizationof border information and even for 
ontour 
oding.
3.3.10 Graphs and latti
esThe 
oordinates vk of any site of a latti
e L in Rm belong to Zm . A grid 
an thus be asso
iatedwith a 2D latti
e: ea
h vertex in the grid 
orresponds to a site in the latti
e and vi
e versa.Latti
e sites 
an be asso
iated with grid verti
es through a site fun
tion: all sites s of a latti
e
an be written s = s[v℄ =Pm�1j=0 vjuj where v = [v0 : : : vm�1℄T 2 V = Zm . Figure 3.3 shows the2D re
tangular and hexagonal R 2 latti
es with the 
orresponding Z2 grids superimposed.Hen
e, a grid and a latti
e are usually asso
iated with a digital image: the latter spe
i�es thepositions of ea
h pixel in the original 
ontinuous image, while the former introdu
es a stru
ture,or neighborhood system, into the set of image pixels. The type of grid sele
ted usually dependson the spatial arrangement of the sampling latti
e sites: the hexagonal grid in Z2 is normallyasso
iated with a hexagonal latti
e in R 2 , i.e., when digitalization is performed through a
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(a) Re
tangular grid over re
t-angular latti
e. (b) Hexagonal grid overhexagonal latti
e.
Figure 3.3: Examples of 2D latti
es with superimposed grids. Grid verti
es and latti
e sitesare represented by dots and grid edges are represented by lines. The Voronoi tessellation
orresponding to the latti
e sites is shown using dotted lines.
hexagonal sampling latti
e, it is natural to use a hexagonal grid for representing the relationsbetween the pixels.When digitizing, Z must be 
hosen su
h that s[v℄ 2 R. Sin
e R is usually a bounded region(mostly a re
tangle), Z will also be bounded. The de�nition of grid given previously pre
ludesthe use of a bounded set of verti
es, sin
e grids must be t-invariant. However, it is possibleto restri
t the simple graph 
orresponding to an unbounded grid to the verti
es Z of interest.Hen
e, the graphs asso
iated with digital images are usually not only simple, but also limited.From here on, the stress will be put on graphs, rather than grids, and thus G(Z;A) will alwaysrefer to a graph, usually a simple graph asso
iated to either an image or a sequen
e of imagesde�ned either on Z � Z2 or on N� Z � Z3 .De�nition 3.65. (image graph) A graph where the verti
es 
orrespond to the image pixelsand there are ar
s between pixels whi
h are geometri
al neighbors in the impli
it sampling latti
e.Often a single extra external vertex is added to represent the outside of the image whi
h isadja
ent to all pixels in the boundary of the image. It may be ne
essary to allow the imagegraph to be a multigraph. This happens when it is important to establish a 
orresponden
ebetween its ar
s and the edges (to be de�ned later) between pixels. In this 
ase, the 
orner pixelsin a re
tangular latti
e on a re
tangular domain may have two ar
s 
onne
ting them to the extraexternal pixel.
In image graphs there is an impli
it neighborhood system. The re
tangular 2D graph, obtainedfrom the re
tangular grid, de�nes a N4 neighborhood system,11 where ea
h vertex has fourneighbors, as shown in Figure 3.4(a). Similarly a N6 neighborhood system is asso
iated with the11A neighborhood system is Nn if ea
h vertex in the graph has n neighbors, ex
ept possibly at the limits ofthe graph.
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hexagonal grid, see Figure 3.4(
). Another type of neighborhood system, N8 in Figure 3.4(b), 
anbe asso
iated with images digitized using a re
tangular 2D latti
e. This type of neighborhoodsystem 
an be very useful, even though it 
annot 
orrespond to any possible grid, sin
e it failsthe non-
rossing 
ondition for grids (this neighborhood system is asso
iated with a non-planargraph).

(a) N4 on a re
tangu-lar latti
e. (b) N8 on a re
tangu-lar latti
e.

(
) N6 on a hexagonal lat-ti
e.
Figure 3.4: Examples of 2D image graphs with di�erent neighborhood systems. Graph verti
esare represented by dots and graph ar
s are represented by lines.In the 
ase of a progressive (3D) sampling matrix, the natural neighborhood system, and hen
egraph, to asso
iate with the digital pixel sequen
e is N6, where ea
h vertex has six neighbors,as shown in Figure 3.5.
Pixel neighborhoods and 
onne
tivityOn a re
tangularly sampled digital image f [�℄ de�ned on Z � Z2 , the terms N4(v) (or 4-neighborsof v), Nd(v) (or d-neighbors of v) and N8(v) (or 8-neighbors of v), v being a 2D pixel v = [i; j℄,will be taken to meanN4(v) = f[i� 1; j℄; [i; j � 1℄; [i; j + 1℄; [i+ 1; j℄g \ Z; (3.2)Nd(v) = f[i� 1; j � 1℄; [i� 1; j + 1℄; [i+ 1; j � 1℄; [i+ 1; j + 1℄g \ Z, and (3.3)N8(v) = N4(v) [ Nd(v): (3.4)
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Figure 3.5: The 3D progressive sampling latti
e with the N6 neighborhood system.
Two pixels v1 and v2 are 4-
onne
ted if v2 2 N4(v1), d-
onne
ted if v2 2 Nd(v1), and 8-
onne
tedif v2 2 N8(v1).Mixed 
onne
tivity is de�ned with respe
t to a given property P (:) of the values of the pixels ofan image f . Two pixels v1 and v2 su
h that P (f [v1℄) = P (f [v2℄) are m-
onne
ted if v2 2 N4(v1)or if v2 2 Nd(v1) and 8v 2 N4(v1) \ N4(v2); P (f [v℄) 6= P (f [v1℄). Mixed 
onne
tivity is amodi�
ation of 8-
onne
tivity whi
h eliminates multiple path 
onne
tions in sets of pixels whenthe N8 image graph is used [56℄.
3.4 Planar graphs and duality
Planar graphs have a series of interesting properties. If a graph is planar, so is any of its
ontra
tions, any of its redu
tions, and, in general, any homeomorphi
 graph. Noti
e, however,that if the 
ontra
tion of a graph is planar, nothing 
an be said about the planarity of theoriginal.
3.4.1 Euler theoremWhen a planar graph is drawn without 
rossing ar
s, its ar
s divide the 2D plane into regions(or fa
es), all but one of whi
h are bounded. Drawing a graph on a plane 
an be seen to beequivalent to drawing it on a sphere (see [186℄), and, on a sphere, all regions are bounded. Letr be the number of regions in a planar embedding of a 
onne
ted planar graph G(V;A). Then,by Euler's theorem [44℄, #V + r �#A = 2. This formula 
an be extended to en
ompass alsodis
onne
ted graphs. Let 
 be the number of 
onne
ted 
omponents in the planar graph. Then,#V + r �#A = 1 + 
. Or, whi
h is the same, �(G) = r � 1 or even �(G) = 1 + #A� r.An ar
 subdivision performed on a planar graph removes one ar
, adds other two ar
s, and anextra non-isolated vertex: the number of 
onne
ted 
omponents and the number of regions donot 
hange. The same thing happens for an ar
 redu
tion, where the net result is one less vertex
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and one less ar
.A ni
e 
orollary of Euler's theorem is that in any planar, simple graph G(V;A) with #V >2, the relation #A � 3#V � 6 always holds [44℄. The importan
e of this relation, in theframework of this thesis, stems from the fa
t that graph algorithms whose eÆ
ien
y is boundedabove by some polynomial fun
tion f(�) of A, that is, algorithms whi
h run in O(f(#A)), arealso O(f(#V)) in the 
ase of planar, simple graphs. The result is also valid if some of theterms in f(�) are logarithms. Noti
e that, for simple graphs in general, one 
an only say that#A � #V(#V� 1)=2, whi
h is an equality for a 
omplete simple graph.No simple relations exist between the number of ar
s and the number of verti
es in the general
ase of pseudo- or multigraphs, even if planar.
3.4.2 Duality
De�nition 3.66. (duality [186℄) A graph G2(V2;A2) is a dual of a graph G1(V1;A1) if thereis a bije
tive mapping between A2 and A1 su
h that a set of ar
s in A2 is a 
ir
uit ve
tor of G2i� the 
orresponding set of ar
s in A1 is a 
utset ve
tor of G1.
For questions of e
onomy of notation, it will be assumed that dual graphs share the same setof ar
s, i.e., the bije
tive mapping is the identity fun
tion. In this 
ase, it is the ar
 fun
tionsof the dual graphs whi
h are di�erent and whi
h map the same set of ar
s to pairs of verti
esfrom the two di�erent graphs.It 
an be proved that if graph G2 is a dual of graph G1, then graph G1 is a dual of graph G2.Hen
e, it may be said that two graphs are dual. If two graphs are dual, then 
ir
uits in one
orrespond to 
utsets in the other. Two dual graphs always have the same number of ar
s, byde�nition.But perhaps the most important fa
t about duals is that a graph has a dual i� it is planar.Hen
e, dual graphs are always planar. Noti
e that duals, in general, are not unique. However,it 
an be proved that all duals of a graph G are 2-isomorphi
, and that every graph 2-isomorphi
to a dual of G is also a dual of G.Given an arbitrary dis
onne
ted planar graph, by the de�nition of 2-isomorphism, it is alwayspossible to �nd a 
onne
ted 2-isomorphi
 graph. Hen
e, any planar graph, dis
onne
ted or not,has a 
onne
ted dual.Given a 2D embedding of a planar graph, a dual graph 
an be derived as follows:De�nition 3.67. (geometri
al dual of a planar embedding) Let G(V;A) be a planargraph with a given graphi
al representation without 
rossing ar
s (a planar embedding). Let Fbe the set of the regions in its graphi
al representation (in
luding the outer, unbounded region).Then, the planar graph Gd(F;A) with ea
h ar
 a 2 A su
h that gd(a) = fr1; r2g, where r1 andr2 are the regions whi
h ar
 a separates in the original graph, is the geometri
al dual of thegiven planar embedding of graph G(V;A).
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It 
an be proved that the geometri
al dual of a planar embedding of a planar graph is indeeda dual of the planar graph. Also, by 
onstru
tion, all geometri
al duals are 
onne
ted.Let Gd(Vd;A) be the geometri
 dual of a planar embedding of the planar 
onne
ted graphG(V;A). Clearly, by 
onstru
tion of geometri
 duals, #Vd = r, where r is the number ofregions of G. Then, by Euler's theorem, #V = rd, where rd is the number of regions in Gd.Hen
e, given two 
onne
ted dual graphs, the number of verti
es in one is equal to the numberof regions in the other.Sin
e 2-isomorphi
 graphs have the same rank and the same number of ar
s, then, by Euler'sformula, all duals of a planar graph have the same number of regions.Theorem 3.45. If two graphs are dual, the nullity of one is equal to the rank of the other.
Proof. Let G(V;A) and Gd(Vd;A) be two planar graphs. Let G0(V0;A) and G0d(V0d;A) be 2-isomorphi
 to G and Gd, respe
tively, but 
onne
ted. Hen
e, G0 and G0d are duals. If two graphsare 2-isomorphi
, they have the same rank. Hen
e, �(G) = �(G0) and �(Gd) = �(G0d). By Euler'sformula, �(G) = �(G0) = 1 + #A � r0 and �(Gd) = �(G0d) = 1 + #A � r0d, where r0 = r is thenumber of fa
es of G and G0 and any 2-isomorphi
 graphs, and r0d = rd is the number of fa
esof Gd and G0d and any 2-isomorphi
 graphs. But r0 = #V0d. Hen
e �(G) = 1 + #A � #V0d =#A� �(G0d) = #A� �(Gd) = �(Gd).
It will be seen in the following that duality 
an be used to relate two types of information foundin 2D maps: information about adja
en
y between regions and information about the bordersbetween regions.
Dual operationsGiven two dual graphs G and Gd, it is possible to de�ne an algebra of dual operations on bothgraphs whi
h still result in dual graphs.Let a be an ar
 in the dual graphs G and Gd. Let G0 be the graph obtained by 
ontra
ting ar
a in G, and G0d the graph obtained by removing a from Gd. Then G0 and G0d are also duals withthe same 
orresponden
e between the ar
s. Hen
e, 
ontra
tion and removal of ar
s are dualoperations.Let a be an ar
 in the dual graphs G and Gd. If a is self-
onne
ting in G, then it is a 
ir
uitve
tor in G. By duality, it is also 
utset ve
tor in Gd, i.e., it is a bridge in Gd. Hen
e, removalof a self-
onne
ting ar
 and removal of the 
orresponding bridge are dual operations.Consider a vertex v with d(v) = 2 and two di�erent ar
s a1 and a2 of G in
ident on v. Performingan ar
 redu
tion of v is the same as 
ontra
ting one of its ar
s, say a1. The two ar
s are 
learlya 
utset ve
tor of G. This 
utset ve
tor either 
onsists of a single 
utset or it 
onsists of two
utsets. The �rst 
ase o

urs only if a1 and a2 are 
ir
uit ar
s. The se
ond 
ase o

urs whenboth a1 and a2 are bridges. In the dual graph the �rst 
ase 
orresponds to a1 and a2 forminga 
ir
uit, that is, to a1 and a2 being parallel or multiple ar
s. The se
ond one, to a1 and a2
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being self-
onne
ting ar
s. Hen
e, performing an ar
 redu
tion on two 
ir
uit ar
s is the sameas merging (or simplifying) the two 
orresponding parallel ar
s in the dual.
Spanning trees and forestsOne of the most important results relating duality and spanning trees is the following theorem:Theorem 3.46. The 
hords of a spanning forest of a graph indu
e a spanning forest in thedual graph, assuming it exists.
Proof. Let G(V;A) and Gd(Vd;A) be two dual (planar) graphs. Let F(V;As) be a spanningforest. We want to prove that Fd(Vd;Asd), with Asd = A n As, is a spanning forest of Gd.First we prove that Fd is a
y
li
. Then we prove that it has exa
tly #Asd = #A � #As =#Vd � 
d = �(Gd), where 
d is the number of 
onne
ted 
omponents of Gd. It is also 
lear thatFd is a subgraph of Gd. Together, these fa
ts prove that Fd is indeed a forest of Gd.Fd is a
y
li
: Suppose that Fd has a 
ir
uit C. Cir
uit C is also a 
ir
uit of Gd, obviously. Thear
s in C are a 
utset in G. This 
utset must 
ontain at least one bran
h b of F . But thenb 2 As and b 2 Asd = A nAs, whi
h is a 
ontradi
tion. Hen
e, Fd is a
y
li
.#Asd = �(Gd): By Theorem 3.45 �(G) = �(Gd), i.e., �(G) = #A � �(Gd). But, sin
e F is aspanning forest, #As = �(G). Hen
e, #Asd = #A�#As = �(Gd).De�nition 3.68. (dual spanning forest) Given a spanning forest F(V;As) of graphG(V;A) with dual G(Vd;A), the subgraph Fd(Vd;A nAs) is the dual spanning forest of F .12Corollary 3.47. Given a spanning forest in a graph and its dual spanning forest in the dualgraph, the fundamental 
ir
uits in one graph 
orrespond to the fundamental 
utsets one theother.
Proof. Let F(V;As) be a spanning forest of G(V;A) with dual Gd(Vd;A), and Fd(Vd;AnAs)its dual spanning forest. Let b be a bran
h of F . Let C be its 
orresponding 
utset in G. Sin
efundamental 
utsets 
ontain only one bran
h, C n fbg 
onsists solely of 
hords. But C, byduality, is a 
ir
uit in Gd. The 
hords of F are the bran
hes of Fd, and vi
e versa. Hen
e, C is a
ir
uit in Gd whi
h 
ontains only one 
hord of Fd. Hen
e, it is a fundamental 
ir
uit. The proofthat fundamental 
ir
uits 
orrespond to fundamental 
utsets follows the same reasoning.
Given a spanning forest F of a 
onne
ted graph G with geometri
al dual Gd, let Fd be thedual spanning forest of F . If a bran
h is removed from F , the number of trees, or 
onne
ted
omponents, in the forest will in
rease by one. If the same bran
h of F is inserted into Fd,a 
ir
uit is 
reated, or, using Euler's theorem, a region is introdu
ed by splitting an existingregion in two. This pro
ess 
an be 
ontinued as long as there are bran
hes to remove from Fand insert into Fd, in
reasing su

essively the 
onne
ted 
omponents of F and the number ofregions in Fd. When a region is split in two in Fd, those two regions are limited by a 
ir
uit12Note the subtlety: a dual spanning forest is not the dual of a spanning forest!
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whi
h, in the geometri
al representation, envelops the verti
es of the two 
onne
ted 
omponentsobtained in F .It is 
lear that the pro
ess of removing k� 
 bran
hes from a spanning forest with 
 
onne
ted
omponents leads to a spanning k-tree of the same graph. The 
orresponding operation in thedual spanning forest is the 
reation of 
ir
uits. Hen
e, the dual of a k-tree is a pseudo-forest inwhi
h some ar
s are allowed to be 
ir
uit ar
s.
Shortest spanning trees and forests
It was shown in the previous se
tion that the 
hords of a spanning forest of a graph indu
e aspanning forest in the dual graph. A stronger result is proved here:Theorem 3.48. The dual spanning forest of a SSF is a LSF (and vi
e versa).
Proof. Let F(V;As) be an SSF of graph G(V;A) with dual Gd(Vd;A). Let Fd(Vd;A nAs)be the dual spanning forest of F . Take any bran
h b of F and its 
orresponding fundamental
utset C in G relative to forest F . A

ording to Theorem 3.11, w(b) � w(
) with 
 2 C. ByCorollary 3.47,C is also a fundamental 
ir
uit of Fd with 
hord b. Hen
e, given that w(b) � w(
)with 
 2 C, and again by Theorem 3.11, Fd is a LSF.
3.4.3 Four-
olor theorem
In mathemati
al terms, a graph G(V;A) is k 
olorable if there is a 
olor fun
tion 
(�) : V !f1; : : : ; kg su
h that 
(v1) 6= 
(v2) whenever fv1; v2g 2 A. Noti
e that, while multi- and simplegraphs G(V;A) are always #V 
olorable, pseudographs are only 
olorable if they possess noself-
onne
ting ar
s, i.e., if they are multi- or simple graphs.The problem of asserting whether a general graph is k � 3 
olorable is NP-
omplete [51℄. Thatis, there is no deterministi
 algorithm able to solve the problem in polynomial time [51℄.13An interesting property of multi- or simple planar graphs is that they 
an be 
olored usingfour 
olors. That is, it is possible to assign one of four di�erent 
olors to ea
h vertex of thegraph su
h that verti
es whi
h are end verti
es of the same ar
 have di�erent 
olors. This was
onje
tured in 1852 by Fran
is Guthrie, a student of De Morgan, and remained a 
onje
tureuntil 1976, when Appel and Haken published the proof of the FCT (Four-Color Theorem) whi
hinvolved thorough 
omputer assisted proofs, impossible to verify by hand. In 1996, Robertsonet al. [170℄ published a simpler proof, even though using similar methods, and, in passing, alsoobtained a quadrati
 algorithm for 
oloring a planar graph with four 
olors, i.e., a O(#A2)algorithm, A being the set of ar
s of the planar graph to be 
olored.13If P6=NP, see [51℄.
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3.5 Maps
What are maps? How 
an the relations between their regions be represented? What is pe
uliarin dis
rete maps? Maps 
an be de�ned over 
ontinuous or dis
rete spa
es, of any dimension, justlike images. All fun
tions from su
h a spa
e into a �nite set 
an be though of as a (fun
tion)map. The elements in this �nite set 
an be interpreted as labels of a 
ertain 
lass. In asense, thus, maps and partitions, to be de�ned in Se
tion 3.6.1, are one and the same 
on
ept.However, the term partition will often be more spe
i�
ally asso
iated to a map whi
h resultsfrom a segmentation pro
ess (see De�nition 3.71).A map was de�ned above as a fun
tion from a spa
e to a set of labels. It 
an also be seenas a partition of the spa
e into disjoint subsets of the spa
e (
lasses), ea
h 
orresponding to alabel. The study of the spatial relations between these disjoint subsets is the subje
t of topol-ogy. In the 
ase of a dis
rete and �nite spa
e, whi
h is of paramount interest in the �eld ofautomati
 analysis of images, �nite topology 
an be used. Kovalevsky, in two ex
ellent paperson �nite topology [91, 92℄, demonstrated that 
ellular 
omplexes, a �nite topology 
onstru
t,allow to unambiguously represent neighborhood relations between the subsets of a map, andthis independently of the spa
e dimension. More than that, his results demonstrate that pixelrelationships are insuÆ
ient for this purpose. The edges and verti
es of the pixels (see De�ni-tion 3.79), in the 
ase of a 2D dis
rete spa
e, are fundamental. This had already been re
ognizedintuitively by several generations of image analysis theorists, though it had never before beendemonstrated formally.This thesis uses a related but not equivalent 
on
ept. By the use of duality, the relationshipsbetween the 
lasses, or better, between the regions in a map are represented simultaneouslyby two graphs: the RAMG (Region Adja
en
y MultiGraph) and the RBPG (Region BorderPseudoGraph) (see De�nitions 3.85 and 3.92).14 Even though this representation works well for2D maps, for 3D maps the notions must be extended: the borders no longer form a graph, andduality must be rede�ned. Also, the proposed method of representation does not fully solvethe ambiguity problems of whi
h 
ellular 
omplexes are free. The solution of both problems,through a reformulation of the results on graphs for the broader theory of 
ell 
omplexes, hasbeen left for future work on the subje
t. However, unlike the RAG [154℄, this pair of graphs,RAMG and RBPG, retains information about the 
ontinuity of the borders.
3.5.1 Operations on the dual RAMG and RBPG graphsConsider a 2D image and the 
orresponding 2D embedding of its 
orresponding planar imagegraph. Consider also the geometri
al dual graph of this embedding. These graphs togetherrepresent the spatial relationships between the pixels, regarded as individual regions. The �rstgraph is the RAMG, and the se
ond is the RBPG, if all 
lasses in the map have a single pixel.What happens when two adja
ent regions, that is, adja
ent in the RAMG, are merged together?14RAMG is used even though the word graph, in this thesis, refers by default to a pseudograph (and hen
e alsoto multigraphs). This was done to distinguish it from the RAG (Region Adja
en
y Graph), whi
h is a simplegraph. For reasons of 
oheren
e, the border graph was named a

ordingly.
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Clearly, the 
orresponding verti
es of the RAMG are short-
ir
uited. But this results in at leastone self-
onne
ting ar
. Su
h self-
onne
ting ar
s have no role to play in the RAMG, sin
e theysay nothing about relations between regions. Hen
e, they must be eliminated. What are the
orresponding operations in the dual graph? Sin
e short-
ir
uiting of two adja
ent verti
es andremoval of one of the ar
s between them is a
tually a 
ontra
tion of this ar
, its dual operationis simply the removal of the 
orresponding ar
 from the RBPG. The removal of the other nowself-
onne
ting ar
s of the RAMG 
an also be seen as spe
ial 
ases of 
ontra
tion, its dualoperations also being removal from the RBPG. But after removing su
h ar
s, the RBPG mayhave been left redundant, in the sense that it may 
ontain some redundant vertex, that is, avertex of degree two whi
h has not a self-
onne
ting ar
. If this happens, ar
 redu
tion 
anbe performed on this vertex. Sin
e ar
 redu
tion is the same as 
ontra
tion of one of the ar
sin
ident on the vertex of degree two, the 
orresponding operation on the RAMG is removal ofthat ar
.Contra
tion and removal of a self-
onne
ting ar
 have the same result for the RAMG, butaltogether di�erent results in the 
ase of the dual. Contra
tion 
orresponds to removal in thedual and vi
e-versa. The appropriate operation is thus 
ontra
tion in the RAMG and removalin the RBPG, sin
e otherwise an arti�
ial 
onne
tion of two dis
onne
ted border sets would beintrodu
ed. The result would still be a valid map, a
tually it would be a 2-isomorphism of theresult obtained as suggested. However, it would not have a 
orresponden
e in the real map,de�ned as a partition of the spa
e.
3.5.2 De�nition of mapIt is important to realize two fa
ts about the RAMG. First, it must be a 
onne
ted graph: evenin the unlikely event that the 2D image is de�ned on several non-
ontiguous subsets of the spa
e,one 
an always add a ba
kground region to the map and thus render the RAMG 
onne
ted. Ifthe 2D image is de�ned on a subset of the spa
e whose pixels are 
onne
ted in the 
orrespondingimage graph, the result is obvious. Se
ondly, there 
annot be any bridges in the RBPG, sin
eotherwise that ar
 would not separate two regions. Equivalently, the RAMG 
annot have anyself-
onne
ting ar
s (whi
h are the duals of bridges). As an immediate 
onsequen
e, the RBPGis 2-ar
-
onne
ted.To sum up:1. Self-
onne
ting ar
s play no role in the RAMG. This explains why the RAMG is a multi-graph.2. All verti
es of degree two in the RBPG are 
onne
ted to themselves by a self-
onne
tingar
.3. The operation of merging two regions in a map15 
orresponds to short-
ir
uiting the two
orresponding verti
es in the RAMG, removing the self-
onne
ting ar
s 
reated in thepro
ess, and �nally ar
-redu
ing the verti
es of degree two in the RBPG whi
h are notisolated, if any.15Annexation or invasion, in geopoliti
s parlan
e.
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Hen
e, the operations on the dual adja
en
y and border graphs 
an be though of as the mergingitself, followed by the dual operations ne
essary to render this pair of graphs proper. It is nowpossible to de�ne the 
on
ept of a map and a proper map:De�nition 3.69. (map) A pair of dual graphs, the RAMG and the RBPG, su
h that theRAMG is the geometri
al dual of a given embedding of the RBPG (and hen
e is 
onne
ted).De�nition 3.70. (proper map) A pair of dual graphs, the RAMG and the RBPG, forminga map, su
h that the RAMG has no self-
onne
ting ar
s (redundant adja
en
y information) andthe RBPG has no verti
es of degree two, ex
ept if isolated (that is, there is no homeomorphi
graph of the RBPG whi
h is smaller than the RBPG).In maps, region in
lusion relations 
orrespond to 
ut verti
es in the RAMG. These verti
es
orrespond to regions with, if eliminated, lead to two dis
onne
ted maps. A 
ut vertex in aplanar graph without self-
onne
ting ar
s de�nes a 
ut (the ar
s whi
h in
ident on it), 
omposedof 
utsets (ea
h 
utset is 
omposed of the ar
s with 
onne
t the vertex to a di�erent blo
k).These 
utsets are disjoint. In the dual they 
orrespond ea
h to ar
-disjoint 
ir
uits. But theverti
es 
orrespond, in the dual, to a region or fa
e (by 
onstru
tion, there is a single vertexof the RAMG in ea
h region of the RBPG). Hen
e, that region is limited by more than one
ir
uit, that is, it has \holes". If there are n 
utsets in the 
ut, there are n � 1 holes in theregion, whi
h is limited, in the planar embedding, by the remaining 
ir
uit (1 + n� 1 = n).For verti
es whi
h are not 
ut verti
es, the set of their ar
s is a 
utset, and hen
e 
orresponds,in the dual, to a single 
ir
uit. Hen
e, su
h regions have no \holes".
3.5.3 AlgorithmsGiven a fun
tion map, the 
orresponding map 
an be obtained by building �rst a �
titious mapwhere ea
h pixel 
orresponds to a di�erent region. As seen above, this �
titious map is simplythe image graph and its geometri
al dual. The map 
an be obtained by merging su

essivelyadja
ent regions with the same label, using the operations de�ned above. Alternatively, onemight start with a single region, en
ompassing all pixels, and su

essively split non-uniformregions, i.e., regions 
ontaining di�erent labels.Often the fun
tion map is de�ned impli
itly by the values of the pixels of an image. This isthe 
ase before a segmentation pro
ess is performed. In this 
ase, the map 
an be built onthe 
y, while the segmentation pro
eeds. A
tually, most segmentation algorithms rely on themap stru
ture to store information about regions and borders. Regions 
an 
ontain the set of
orresponding pixels and statisti
s of their values, just as borders 
an 
ontain sets pixel bordersand statisti
s of their values.
3.6 Partitions and 
ontours
In this se
tion the notions of segmentation as the pro
ess leading to a partition, and the notionsof 
lass, region and borders are de�ned.
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3.6.1 Partitions and segmentationDe�nition 3.71. (segmentation) Pro
ess of 
lassifying ea
h pixel in a digital image or se-quen
e as belonging to a 
ertain 
lass with 
ertain properties. The 
lass properties are assumedto be representable by ve
tors of parameters (or statisti
s). Hen
e, after segmenting an imagef [�℄ one obtains:1. the number l of 
lasses that were found (this value may be �xed a priori);2. the partition, i.e., a fun
tion p[�℄ : Z! L whi
h 
lassi�es ea
h pixel (see de�nition below);and3. possibly a sequen
e pi, with i = 0; : : : ; l � 1, of parameter ve
tors.This de�nition of segmentation is generi
. Stri
ter de�nitions will be given as needed in Chap-ter 4.De�nition 3.72. (partition) A digital image p[�℄ : Z ! L (or p[�℄ : N � Z ! L in the 
aseof 3D partitions) taking values in L = f0; : : : ; l � 1g, where the value of ea
h pixel is a labelidentifying the 
lass to whi
h the pixel belongs.De�nition 3.73. (binary partition) A partition with l = 2 is said to be a binary partition,sin
e it is a binary image taking only values 0 and 1.De�nition 3.74. (mosai
 partition) A partition with l > 2 is a mosai
 partition.
3.6.2 Classes and regionsDe�nition 3.75. (
lass) The set of all pixels in a partition, or verti
es of the asso
iatedimage graph, having a spe
i�
 label. Class 
, i.e., the set V
, of a partition de�ned in Z is givenby: V
 = fv 2 Z : p[v℄ = 
g (or V
 = fv 2 N� Z : p[v℄ = 
g in the 
ase of a 3D partition).De�nition 3.76. (
lass graph) The maximal subgraph of the image graph G(V;A) (whereV = Z for 2D partitions and V = N � Z for 3D partitions) indu
ed by a 
lass 
, i.e., by theset of verti
es V
 � V.De�nition 3.77. (region graph) A 
onne
ted 
omponent of a 
lass graph.De�nition 3.78. (region) A set of pixels in a partition whi
h are the verti
es of a regiongraph. Regions are thus 
omponents of 
lasses.The terms 
lass and 
lass graph (and also region and region graph) will be used inter
hangeably.The meaning should be dedu
ible from the 
ontext.The main di�eren
e between 
lasses and regions, both 
ontaining pixels with the same label, isthat the latter are always 
onne
ted while the former 
an be dis
onne
ted, see Figure 3.6. If a
lass is 
onne
ted, then it 
onsists of a single region. Noti
e that no 
onne
tivity restri
tionswere imposed to the 
lasses in the de�nition of segmentation. Several stri
ter de�nitions ofsegmentation impose 
onne
ted 
lasses. If su
h is the 
ase, and if this is 
lear from the 
ontext,the term region will be used instead of 
lass.
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(a) Partition and the 
orrespondingimage graph.

Class 1:
Class 2:
Class 3:(b) Class graphs.

Region A:
Region B:
Region C:
Region D:(
) Region graphs.

Figure 3.6: Example of a partition on a re
tangular latti
e with an asso
iated N4 graph. Thepartition has three 
lasses (and hen
e three 
lass graphs) and four regions (and thus four regiongraphs).
Edges, borders, boundaries, and 
ontoursThe trivial way to represent a partition is by spe
ifying the labels of ea
h of its pixels: this isa
tually what De�nition 3.72 says. However, it is often more natural to represent a partition byspe
ifying the boundaries of its regions. Su
h a representation is suÆ
ient if region equivalen
eis suÆ
ient (see Se
tion 3.6.4). If 
lass equivalen
e is desired, then, in the 
ase of partitionswith dis
onne
ted 
lasses, further information is required, namely whi
h regions belong to ea
h
lass.De�nition 3.79. (border, edge and fa
e) A border is a 
ontinuous line between two ad-ja
ent regions, in the 
ase of 2D partitions. The borders do not 
ontain points of departure ofany other borders (see Figure 3.7). If both regions 
orrespond to a single pixel, the border isan edge. In the 
ase of 3D partitions, a border is a 
ontiguous surfa
e between two adja
entregions. The 3D 
on
ept 
orresponding to the 2D edge is the fa
e.
Edges have a (relative) length whi
h depends on their orientation and on the shape of the pixelin the asso
iated sampling latti
e, if there is one. In the 
ase of re
tangular sampling latti
es,this dependen
e 
an be written in terms of the pixel aspe
t ratio. The measure asso
iated withborders in the 3D 
ase is an area. However, sin
e one of the dimensions of the 3D partition isusually time, this area does not have an immediate physi
al interpretation.De�nition 3.80. (boundary) The union of the borders of a 
lass or region. The length ofthe boundary is a length proper (a
tually a perimeter, sin
e boundaries are always 
losed) for2D partitions and an area for 3D partitions.De�nition 3.81. (
ontour) The union of all 
lass boundaries in a partition. Noti
e that the
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(a) Partition.

(b) An edge. (
) A border. (d) A boundary. (e) The 
ontour.
Figure 3.7: A partition, its 
ontour, and examples of an edge, a border, and a boundary.

length of the 
ontour of a partition is half the sum of the boundary lengths of all 
lasses, sin
eadja
ent 
lasses share, by de�nition, the 
ommon borders.
A partition 
an thus be (partially) represented by spe
ifying the boundaries of its regions.
3.6.3 Region and 
lass graphsTwo types of graphs, besides image graphs, 
an be de�ned over partitions: the RAG and theCAG (Class Adja
en
y Graph). The de�nition of both makes use of the 
on
ept of adja
en
y:De�nition 3.82. (adja
en
y) Two sets of verti
es V0;V00 � V of graph G(V;A) su
h thatV0 \V00 = ; are said to be adja
ent if there is at least one ar
 fv0; v00g 2 A su
h that v0 2 V0and v00 2 V00.De�nition 3.83. (RAG) A simple graph with as many verti
es as regions in a given partition,plus an extra region representing the outside of the partition domain Z � Z2 (or N� Z � Z3).There is a single ar
 between any pair of verti
es 
orresponding to adja
ent regions in thepartition, i.e., there is a single ar
 between any two regions sharing at least one border in thepartition.
The RAGs of partitions asso
iated with N4 and N6 graphs are always planar. A RAG 
an beobtained from the image graph of a partition by su

essively performing ar
 
ontra
tions onar
s in
ident on verti
es belonging to the same 
lass.
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De�nition 3.84. (CAG) A simple graph with as many verti
es as 
lasses in a given partition,plus an extra 
lass representing the outside of the partition (as above). There is a single ar
between any pair of verti
es 
orresponding to adja
ent 
lasses in the partition, i.e., there is a(single) ar
 between any two 
lasses sharing at least one border in the partition.
The CAGs of partitions asso
iated with N4 or N6 graphs may be non-planar. If 
lasses are
onne
ted, the CAG is equal to the RAG (and hen
e planar). The CAG 
an be obtained fromeither the image graph of the partition or from the RAG by su

essively short-
ir
uiting pairsof verti
es belonging to the same 
lass and removing the resulting self-
onne
ting ar
s.

A B
C D

Out

(a) RAG.

1 2
3

Out

(b) CAG.
Figure 3.8: RAG and CAG 
orresponding to the partition in Figure 3.6(a). The 
ir
les are thegraph verti
es and 
orrespond to regions and 
lasses, respe
tively. The 
ir
le labeled \Out" isthe external region or 
lass.
A more powerful graph, whi
h, together with the RBPG, de�nes the map of a partition, is theRAMG:
De�nition 3.85. (RAMG) A multigraph with as many verti
es as regions in a given parti-tion, plus an extra region 
orresponding to the outside of the partition domain. There is an ar
for ea
h border between regions in the partition. The ar
s 
onne
t the two regions whi
h areadja
ent through the 
orresponding border. Hen
e, two regions 
an be 
onne
ted by more thanone ar
, if they are adja
ent through more than one border.
Unlike the 
ase of the RAGs, RAMGs 
annot be built ignoring the topology of the boundaries.They 
an, though, be built as indi
ated in Se
tion 3.5.3.
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(a) Partition and the 
orresponding im-age graph. (b) RAG. (
) RAMG.
Figure 3.9: RAG and RAMG 
orresponding to a given partition. The white vertex is theexternal region.
3.6.4 Equivalen
e and equality of partitionsAn important 
on
ept when dealing with partition 
oding is that of equivalen
e between parti-tions:De�nition 3.86. (
lass and region topologi
al equivalen
e of partitions) Two par-titions p1[�℄ and p2[�℄ with the same labels are 
lass (region) topologi
ally equivalent if their
orresponding CAGs (RAGs) are isomorphi
 through the identity fun
tion on labels.
A stri
ter form of topologi
al equivalen
e 
an be used in whi
h the RBPG graphs16 of the propermaps of the two partitions are required to be isomorphi
.De�nition 3.87. (
lass and region equivalen
e of partitions) Two partitions are 
lass(region) equivalent if they divide an image into equal 
lasses (regions). Mathemati
ally, parti-tions p1[�℄ : Z ! L1 and p2[�℄ : Z ! L2, de�ned in Z, are said to be 
lass equivalent if it ispossible to �nd a fun
tion f [�℄ : L1 ! L2 whi
h is bije
tive between the 
lasses used in partitionsp1[�℄ and p2[�℄. That is: f(p1[v℄) = p2[v℄ 8v 2 Zf�1(p2[v℄) = p1[v℄ 8v 2 ZA 
lass is used in a partition if there is at least one pixel in the partition with the 
orrespondinglabel.16Or the RAMG, for that matter.
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Equality is de�ned trivially:De�nition 3.88. (equality of partitions) Two partitions are said to be equal if, apart frombeing 
lass equivalent, the labels of ea
h 
lass are equal in both partitions. Or, whi
h is thesame, if the 
orresponding digital partition images are equal.
Line, edge, and border graphsIn 2D, 
ontours 
an be 
onveniently de�ned over a line graph, whi
h is the dual of a planarimage graph. For 3D partitions more 
ompli
ated stru
tures are required. This issue will notbe dis
ussed here, sin
e often the 3D partitions are taken as sequen
es of 2D partitions, whi
his even more natural in the 
ase of partitions of moving images.De�nition 3.89. (line graph) Planar simple graph obtained by geometri
al duality from the(natural) embedding of the (
onne
ted) planar image graph (with an extra external pixel).Figure 3.10 shows an N4 image graph (on a re
tangular latti
e) and the 
orresponding line graph,whi
h is also N4. The line graph 
orresponding to the N6 image graph, e.g., on a hexagonallatti
e, is N3, as 
an be easily veri�ed.

(a) Image graph. (b) Line graph.
Figure 3.10: A N4 image graph and its dual line graph, also N4.The line graph of a 2D partition is thus obtained by duality of its planar image graph. The
ontour of a partition 
an be represented by the subgraph of the line graph 
ontaining all verti
esand ar
s standing between pixels with di�erent labels (i.e., belonging to di�erent 
lasses). Thisis the edge 
ontour graph:De�nition 3.90. (edge 
ontour graph) A subgraph (planar and simple) of the line graph
orresponding to the boundaries of the 
lasses in the partition. An ar
 in the line graph belongsto the edge 
ontour subgraph if its 
orresponding ar
 in the dual partition image graph 
onne
tspixels with di�erent labels, i.e., whi
h belong to di�erent 
lasses.
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All edge 
ontour graphs are 2-ar
-
onne
ted, sin
e bridges 
annot stand between two 
lasses.An edge 
ontour graph, i.e., a 
ontour de�ned on the edges, 
an thus be 
onstru
ted as follows:

1. mark the ar
s of the (planar) image graph whi
h stand between pixels belonging to dif-ferent 
lasses (the exterior extra pixel 
an be assumed to belong to a non-existent 
lass);2. mark the 
orresponding ar
s in the dual line graph, also mark the end verti
es of thesear
s;3. the edge 
ontour graph is 
omposed of the marked ar
s and verti
es in the line graph.De�nition 3.91. (
ontour) A fun
tion 
[�℄ : A ! 0; 1 marking the ar
s of a line graphG(F;A) as belonging or not to the edge 
ontour graph.
Noti
e that the edge 
ontour graph, and hen
e the partition (up to region equivalen
e), 
an beobtained from 
[�℄. The same observation would not be true for a fun
tion marking the edge
ontour graph verti
es, sin
e ambiguity might o

ur, as shown in Figure 3.11.

Figure 3.11: Example of ambiguity for vertex based 
ontour de�nitions on edge 
ontour graphs.Two partitions with the same edge 
ontour graph verti
es.Contours may also be de�ned in the image graph itself, that is, with its verti
es 
orrespondingto the pixels of the image. In this 
ase, a 
ontour might 
onsist of a fun
tion marking all thosepixels with neighbors belonging to a di�erent 
lass. However, this leads to thi
k 
ontours, sin
epixels at both sides of a border between two regions are marked. This problem may be solvedby marking only one side of ea
h border.In the 
ase of 
ontours de�ned on pixels, a graph 
an also be asso
iated with the 
ontour. Thisgraph will be 
alled the pixel 
ontour graph, to distinguish it from the edge 
ontour graph. Thepixel 
ontour graph 
orresponds to the maximal subgraph of the image graph whose verti
eshave been deemed to belong to a border, i.e., to belong to the 
ontour. Noti
e, however, thatif a 
ontour is de�ned on pixels over a N8 graph, it may be ne
essary to purge some of the
ontour pixels, obtained using the 
riterion above, and also some of the 
ontour graph ar
s(see [133℄). Contours on pixels are plagued by many in
onsisten
ies, whi
h are not dis
ussed inthis thesis [181, 91, 92, 31℄.
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Generally, the 
ontour information allows only for a representation of partitions up to regionequivalen
e. If 
lass equivalen
e, or equality, is required, then information about whi
h regionsbelong to whi
h 
lasses (region-
lass information) is ne
essary.The 
ontour graphs, edge- or pixel-based, 
an 
ontain several types of 
ontour verti
es, a

ordingtheir degree (see Figure 3.12):Degree 1Dead end vertex; these verti
es exist only for 
ontours de�ned on the pixels.17Degree 2Normal verti
es.Degree 3Jun
tion verti
es.Degree 4Crossing verti
es.

normal jun
tion

rossing

(a) Edge 
ontour graph.

dead end
jun
tion

(b) Pixel 
ontour graph.
Figure 3.12: Types of verti
es on 
ontour graphs.The maximal redu
tion of the edge 
ontour graph is the RBPG (of whi
h the RAMG is thegeometri
al dual):De�nition 3.92. (RBPG) A graph having has many verti
es as there are verti
es of degreelarger than two in the edge 
ontour graph plus as many verti
es as there are 
omponents of theedge 
ontour graph 
onsisting of a single 
ir
uit. Ea
h ar
 
orresponds to a path (possibly 
losed)in the edge 
ontour graph 
ontaining only verti
es of degree two (i.e., to sets of 
ontiguous edgesforming borders).17However, in a more general de�nition of 
ontours, where 
ontours are not the dual of some partition, theseverti
es do o

ur even for 
ontours de�ned on the line graph. Su
h te
hniques whi
h use a more general de�nitionof 
ontour may be used for the \edge-based des
ription of 
olor images," see [37, 19, 58℄.
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Sin
e the RBPG is the maximal redu
tion of the edge 
ontour graph, it obviously 
ontains noverti
es of degree two, ex
ept possibly isolated verti
es with a self-
onne
ting ar
.
3.7 Con
lusions
The graph theoreti
al foundations of image analysis were presented. A thorough dis
ussion ofseeded SST 
on
epts and algorithms, namely for �nding the SSF, the SSkT, the SSSkT, orthe SSSSkT of graph, has been done. From this work resulted a new asymptoti
ally linearamortized time algorithm for �nding multiple SSSSkTs, for di�erent sets of seeds, of the samegraph. The relation between the SST and dual graphs, whi
h plays an important role in provingthat basi
 region merging and basi
 
ontour 
losing are one and the same algorithm, solvingthe same problem (see Chapter 4), has been established.
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Chapter 4
Spatial analysis

The best way of �nding out the diÆ
ulties ofdoing something is to try to do it. David Marr
This 
hapter deals with spatial analysis, whi
h, stri
tly speaking, is the analysis of still images.However, moving images will also be taken into a

ount. Time analysis proper, or motionanalysis, is the subje
t of the next 
hapter.Even though there has been intense resear
h in this area of knowledge, results are still farfrom the �nal goal: the 
onstru
tion of a model of reality and its full understanding. Thegoal attainable, for the time being, is to extra
t mid-level vision primitives. Most of the workpresented here, and most of the 
ontributions of this thesis, 
an be 
lassi�ed as pertaining tose
ond-generation video 
oding.Segmentation is a very important step in analyzing a s
ene, i.e., in obtaining a stru
tureddes
ription for it. Se
tion 4.1 introdu
es brie
y the subje
t of segmentation and Se
tion 4.2presents a hierar
hy of the tools involved in segmentation pro
ess and an overview of some spe-
i�
 segmentation tools, espe
ially those related to 
ontour-oriented segmentation. Se
tion 4.3then deals with several 
lasses of region-oriented segmentation algorithms and attempts toframe them within the same theoreti
al framework. The dual relation between region- and
ontour-oriented segmentation is also explained within the same framework.The evolution path in spatial analysis, in the framework of video 
oding, has passed throughtransition zones, when going from �rst-generation, low-level analysis te
hniques, to se
ond-generation, mid-level analysis te
hniques. Se
tion 4.4 presents a knowledge-based segmentationte
hnique for videotelephony appli
ations, 
apable of dealing with mobile environments. It at-tempts to make a 
oarse segmentation of head-and-shoulders mobile videotelephony sequen
esinto three disjoint regions: head, body, and ba
kground. Di�erent qualities, and thus di�erent

89
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bitrate assignments, 
an be attributed to ea
h region. This may improve subje
tive qual-ity of �rst-generation en
oders by in
orporating simple se
ond-generation, mid-level analysiste
hniques. These revamped en
oders maintain 
ompatibility with existing de
oders, thoughproviding better subje
tive quality. Su
h en
oders 
an be said to belong to the transition layerbetween �rst- and se
ond-generation.Se
tion 4.5 presents 
ontributions in the area of generi
 
olor (or texture) segmentation. These
ontributions belong to the area of mid-level analysis, se
ond-generation video 
oding. One ofthe segmentation algorithms proposed, whi
h is related both to split & merge and to RSSTsegmentation, is then extended in Se
tion 4.6 to support supervised segmentation. The impor-tan
e of supervision stems from the fa
t that, as stated before, supervision 
an be seen as a�rst, pragmati
 step towards third-generation, high-level analysis.Finally, in Se
tion 4.7, the RSST te
hniques presented before are extended to allow segmentationof sequen
es of (moving) images in a re
ursive way, so as to maintain the time 
oheren
e of theattained segmentation. The resulting te
hnique has been 
oined TR-RSST. It 
an be seen as astep in the dire
tion of the integration of time and spa
e analysis.
4.1 Introdu
tion to segmentation
The identi�
ation of regions (or obje
ts) within an image or sequen
e of images, i.e., imagesegmentation, is one of the most important steps in se
ond-generation (obje
t- or region-based)video 
oding, and hen
e in mid-level analysis.If a partition of a set S is de�ned as a set R of subsets of S su
h that the union of all theelements of R is S and su
h that, for all r1 6= r2 2 R, r1 \ r2 = ;, then the de�nition ofsegmentation is apparently simple: produ
e a partition of the set of image pixels so that ea
hset (
lass or region) in the partition is uniform a

ording to a 
ertain 
riterion and so that theunion of any two sets in the partition is non-uniform.In the words of Pavlidis [156℄ \segmentation identi�es areas of an image that appear uniform toan observer, and subdivides the image into regions of uniform appearan
e," where uniformity
an be de�ned in terms of grey level (or 
olor) or texture. One 
an, however, envisage anotherkind of segmentation where one expe
ts to identify 
ertain known obje
ts in an image. A

ordingto Harali
k [68℄, \image segmentation is the partition of an image into a set of non-overlappingregions whose union is the entire image (...) that are meaningful with respe
t to a parti
ularappli
ation."These de�nitions are more or less equivalent, though quite vague. Even if an appropriateuniformity 
riterion is given, they establish no 
onstraint as to the number or 
onne
tivity ofthe regions. Hen
e, another, possibly more useful, de�nition may be: produ
e a partition of theimage into a minimum set of 
onne
ted regions su
h that a 
ertain global uniformity measureis above a given threshold. Or: produ
e a partition of the image into a 
ertain number of
onne
ted regions su
h that a 
ertain global uniformity measure is maximized. But the exa
tde�nition and the homogeneity 
riteria are still dependent on the appli
ation.



4.2. HIERARCHIZING THE SEGMENTATION PROCESS 91
Instead of using uniformity 
riteria, dissimilarity 
riteria may also be used. They are in theorigin of the edge dete
tion methods, leading to 
ontour-oriented segmentation, but they 
analso be used in region-oriented segmentation. Segmentation, 
onsidering dissimilarity instead ofuniformity 
riteria, requires that all pairs of sets (regions) in the image partition are dissimilar.This type of segmentation is 
on
eptually dual to region-oriented segmentation. Furthermore, itwill be shown that there are region-oriented segmentation algorithms whi
h are in fa
t formallydual to 
ontour-oriented algorithms, in the sense that both produ
e the same segmentation.The existen
e of a wide variety of natural image features (e.g., shadows, texture, small 
ontrastzones, noise, obje
t overlap) makes it very diÆ
ult to de�ne robust and generi
 homogeneityor similarity 
riteria. A large number of di�erent 
riteria appears in the literature. The 
hoi
eof appropriate uniformity 
riteria depends on the task at hand. If the segmentation aims atidentifying the real life obje
ts in the image automati
ally, e.g., if the image is to be easilymanipulated or edited by a human, then 
riteria will have to be related to the semanti
 
ontentof the represented s
ene. Developing su
h 
riteria is a daunting task that implies modeling withdetail all the levels of the human visual system. It is a high-level vision problem. However, byusing simpler 
riteria, one may render the problem tra
table and still hope the results to be ofsome use for human manipulation. Also, one may envisage mid-level tools attaining high-levelresults with appropriate supervision. As a �rst approa
h, the supervision may be performed bya human, but evolution may render it possible to build automati
 supervision tools.On
e an appropriate uniformity 
riterion or measure has been established, there are manydi�erent algorithms for a
hieving the desired segmentation.
4.2 Hierar
hizing the segmentation pro
ess
This se
tion intends to hierar
hize the possible a
tors in a segmentation pro
ess, from low-level operators to high-level algorithms, and to des
ribe some of the main tools used at thevarious hierar
hi
al levels. The segmentation methods approa
hed here will be restri
ted to themid-level vision level, and hen
e with little or no semanti
al ambitions.In a segmentation pro
ess three hierar
hi
al levels may be 
onsidered (although the division ismore or less arbitrary):1. The lower level is the operator level. Usually the segmentation operators have one or twoimages of a sequen
e as input. The result usually maps ea
h pixel into one of several 
ate-gories, serving has a basis for the segmentation of the 
urrent image into non-overlappingregions. The result is either a primary division of the image into several non-overlappingregions (for region segmentation operators) or a primary 
lassi�
ation of ea
h pixel or ofea
h edge as belonging to a boundary or not (for edge dete
tion segmentation operators).In [108℄ and [18℄ examples of the later 
lass of operators 
an be found.Noti
e that in this 
ontext edge means the physi
al edge of some obje
t in the representeds
ene, and not an edge in the sense of De�nition 3.79. Furthermore, more often than notedge dete
tors aim at dete
ting strong transitions in image 
olor, even if not 
orrespondingto physi
al edges. The wording edge dete
tion is thus used mainly for histori
al reasons.
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2. The middle level is the te
hnique level. Ea
h segmentation te
hnique uses one or several ofthe segmentation operators to produ
e an intermediate step of the segmentation pro
ess.Usually, e.g., in edge dete
tion segmentation te
hniques, �rstly one or more of the low-level segmentation operators are applied, and �nally some pro
essing is performed usingtopologi
al 
onsiderations (like 
ontour 
losing and 
learing of isolated 
ontour pixels).3. The higher level is the algorithm level. At this level, segmentation algorithms integrateone or more segmentation te
hniques (and eventually also segmentation operators) toa
hieve the �nal segmentation. In the 
ase of algorithms using edge dete
tion te
hniques,
onne
ted 
omponent labeling may be used to identify the regions 
orresponding to thedete
ted 
ontours (if the physi
al edges dete
ted 
orrespond to 
losed 
ontours). It alsotries to assess and 
ontrol the overall segmentation quality attained.

Noti
e that this hierar
hi
al division of segmentation into levels is not related to the levelsof vision, and analysis, already mentioned: the operator level, in the 
ase of edge dete
tionoperators, is 
learly a low-level vision me
hanism, while region operators are 
learly related tomid-level vision 
on
epts. Also noti
e that this hierar
hizing is not always 
lear
ut. In the 
aseof region-oriented segmentation, for example, only two levels, or even only a single level, areoften used.
4.2.1 Operator levelThe lower level in the segmentation pro
ess is the operator level. There are a wealth of imageoperators available in literature for use in 
ontour-oriented segmentation te
hniques. For 
om-putational eÆ
ien
y reasons, these operators usually have a limited region of support, i.e., they
orrespond, if linear, to 2D FIR (Finite Impulse Response) �lters. If G is an operator, and f isthe original image, this means that g = G(f), the result of the operator, is su
h that g[n;m℄ 
anbe written as a fun
tion of the values of f [�℄ in a limited region, the region of support, 
enteredin f [n;m℄.In general, large regions of support 
orrespond to a large 
omputational e�ort. However, as [179℄points out, some IIR (In�nite Impulse Response) �lters 
an be implemented re
ursively, with a
onsequent redu
tion of the asso
iated 
omputational e�ort.
Spatial featuresSegmentation operators usually have one or two images of a sequen
e as input and produ
eas output a mapping of ea
h pixel into one of several 
ategories. These 
ategories usually
orrespond to:1. a primary division of the image into several non-overlapping regions, for region segmen-tation operators (the framework is region-oriented segmentation); or2. a primary 
lassi�
ation of ea
h pixel or edge as belonging to a boundary, for edge dete
tionsegmentation operators (the framework, in this 
ase, is 
ontour-oriented segmentation).
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Ve
torial vs. s
alar
Segmentation operators 
an be 
lassi�ed a

ording to the number of image 
omponents theyoperate on:1. s
alar operators operate on a single 
olor 
omponent; and2. ve
torial operators operate on more than one 
olor 
omponent.By far the most 
ommon operators in the literature are of the s
alar type. However, severalauthors proposed ve
torial operators as a good way to 
ope with error and to dete
t somefeatures whi
h may be impossible to dete
t using a single 
omponent [35℄. Lee and Cok [98℄have shown that, if (physi
al) step edges are highly 
orrelated in all the 
olor 
omponents ofan image and if noise in ea
h 
omponent is un
orrelated (whi
h seems a plausible assumption),then ve
torial edge dete
tion operators are less sensitive to noise than the s
alar ones. If, on theother hand, the 
olor 
omponents of an image are less 
orrelated, some important physi
al edgesmay appear in some of the 
omponents whilst missing in others. The use of ve
torial operatorsallows the dete
tion of physi
al edges that would otherwise be missed by s
alar operators.
2D vs. 3D operators
Segmentation operators whi
h have only one image as input are 2D operators. On the otherhand, image operators that have two or more su

essive images of a sequen
e as operands are3D operators. They operate, thus, on more than one image, and hen
e may make use of timeand motion information in the image sequen
e.
2D edge dete
tion operators
Most edge dete
tion operators attempt to dete
t the pixels or edges where the image gradienthas a lo
al maximum in at least one dire
tion or where some se
ond derivative of the image hasa zero 
rossing [108℄. Most of these operators were developed in order to dete
t a parti
ulartype of transition optimally, su
h as step, roof or ridge transitions, in the hope that they alsodete
t reasonably well other types of transitions, hopefully 
orresponding to physi
al edges.Also, most of them were developed initially for dete
tion of transitions on pixels. However,most of them 
an be easily adapted to dete
t transitions on edges.Sin
e digital images usually possess noise, most of the operators use thresholding te
hniquesand/or �ltering in order to 
ondition the derivative estimation problem (Torre and Poggioin [187℄ show that numeri
al di�erentiation is an ill-posed problem in the sense of Hadamard1).Canny [18℄ proposed that the design of an edge dete
tion segmentation operator should attemptto optimize a fun
tional involving three 
riteria:1A problem is well posed in the sense of Hadamard if its solution: exists, is unique, and depends 
ontinuouslyon the initial data.
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Good dete
tionLow probability of dete
ting false physi
al edges and of not dete
ting true physi
al edges.Both de
rease monotoni
ally with the image signal to noise ratio.Good lo
alizationThe estimated physi
al edges should be as spatially 
lose as possible to the true (proje
ted)physi
al edges.Single responseThere should be only one response to a single physi
al edge.
Canny [18℄ minimized numeri
ally the produ
t of the �rst two 
riteria with the single responseas a 
onstraint. This was only done for one dimensional physi
al edges, resulting in a �ltervery similar to the �rst derivative of a Gaussian. The expansion to two dimensions is doneby 
onvolving the one-dimensional edge dete
tor with an appropriate perpendi
ular proje
tionfun
tion. The proposed proje
tion fun
tion is a Gaussian with the same standard deviation �.This operator should be oriented su
h that the one-dimensional edge dete
tor is normal to theestimated physi
al edge dire
tion, i.e., parallel to the Gaussian smoothed gradient dire
tion.Sarkar and Boyer, in [179℄, extended Canny's optimization to an unlimited region of support�lter, and proposed the implementation of su
h �lter using a re
ursive approa
h (i.e., using IIR�lters instead of FIR �lters). The main advantage of this s
heme is that the 
omputationale�ort is the same regardless of the size of the operator (i.e., the standard deviation �).Marr and Hildreth [108℄ proposed to use the zero 
rossings of the LoG (Lapla
ian of Gaussian),des
ribed below. Their method, as opposed to the one proposed by Canny [18℄, is not dire
tional.Besides, as pointed out in [200℄, zero 
rossing operators basi
ally divide the image pixels intothree 
lasses (+, �, and 0) whi
h 
an be thought to 
olor the image plane. However, it is knowthat, in general, four 
olors are required to represent arbitrary 2D partitions. So, zero 
rossingoperators have an inherent diÆ
ulty in segmenting arbitrary images.Harali
k, in [66℄, proposed a te
hnique whi
h is similar to Canny's, the main di�eren
es beingthat the lo
alization uses the zero 
rossings of the se
ond derivative in the gradient dire
tion,and that the derivatives are 
al
ulated using interpolation.In the literature one 
an rarely �nd pre
ise des
riptions of the various operators (e.g., in [108,18℄). This has led to 
onsiderable diÆ
ulty in repeating the results presented by the authors,as 
an be seen by the debate aroused in the mid eighties by [66℄ (see [60℄ and [67℄).Several issues have systemati
ally been la
king pre
ise des
riptions:
� Sin
e most of the edge dete
tion theories were �rst built assuming analog images, howshould digital �lters be build from the 
orresponding analog ones?� How to re
ondition the digital 
oeÆ
ients of the obtained �lter so that in
onsisten
iesintrodu
ed by the digitalization pro
ess are eliminated?� How exa
tly are zero 
rossings dete
ted in se
ond derivative edge dete
tion methods?
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� How exa
tly are gradient lo
al maxima dete
ted in �rst derivative edge dete
tion methods?� Where are transitions dete
ted? On the pixels, on the edges, or on both?

These issues are very important and 
an 
hange quite dramati
ally the results obtained byapplying the same operator to the same images. The mentioned ambiguities and impre
isionshave been partially addressed by two review papers on edge dete
tion methods: [8℄ and [47℄.A good review of the most 
ommon edge dete
tor operators 
an be found in [8℄, where a methodis proposed for the fair 
omparison of several operators (this method is an improvement of theone proposed by Harali
k in [66℄). Another good review, whi
h also dwells on the ill-posedness
hara
ter of edge dete
tion, 
an be found in [187℄.
Operator 
omponentsBernsen, in [8℄, proposes the division of the edge dete
tion operators into three 
omponents:
Transition strengthThe basis for the thresholding whi
h attempts to eliminate the false estimation of physi
aledges 
aused by noise.Edge lo
alizationAttempts to estimate the exa
t lo
alization of the physi
al edges dete
ted by thresholdingthe transition strength.Derivative 
omputationEstimates the derivatives.
Transition strengthTransition strength is used to separate between real physi
al edges and image 
olor transitionsdue to noise. It is usually 
omputed either as the magnitude of the gradient or as the slope ofthe zero 
rossings of the se
ond derivative. The latter, however, is mu
h more sensitive to noisethan the former, and hen
e less reliable [8℄. The reason for this is that the slope of the se
ondderivative is an approximation of a third order derivative, as opposed to the gradient, whi
his a �rst order derivative. Sin
e numeri
al di�erentiation is an ill-posed problem, third orderderivative estimation is mu
h more sensitive to noise.
Edge lo
alizationMany solutions have been proposed for edge lo
alization. Usually pixels or edges whose transi-tion strength is above a given threshold are 
onsidered good 
andidates for estimated physi
aledges. However, Canny [18℄ proposed the use of adaptive thresholding with hysteresis. Thismethod redu
es the 
han
es of breaking a 
ontour (a 
ontiguous set of dete
ted pixels or edges),
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if the threshold of transition strength is set too high, and of estimating wrong physi
al edgesat strong transitions 
aused by noise, if the threshold is set too low. Two thresholds are used:Tl and Th, where Tl < Th. Pixels or edges with transition strength above Tl are 
onsideredtentative physi
al edge elements. If a set of 
onne
ted tentative physi
al edge elements has atleast one element whose transition strength is above Th, then all the elements of the set willbe 
onsidered good estimates of physi
al edges. Otherwise all the elements of the set will be
onsidered not to belong to a physi
al edge.The threshold s
hemes have several problems. The �rst is the possibility of estimation ofphysi
al edges several pixels thi
k, the se
ond is the use of a threshold whi
h is often adjustedby hand. Other s
hemes, whi
h hopefully avoid these problems, 
lassify as belonging to aphysi
al edge all pixels or edges at a zero 
rossing of a se
ond order derivative. Marr andHildreth [108℄ proposed the use of the Lapla
ian, whi
h may be said to be an isotropi
 se
ondorder derivative. Harali
k [66℄ proposed the use of the se
ond derivative in the dire
tion of thegradient, but dete
ting only zero 
rossings that have negative slope in the gradient dire
tion, soas to avoid dete
tion of false physi
al edges 
orresponding to minima, instead of maxima, of theslope. The �gure below shows an example. The upper line is a hypotheti
al luma pro�le, themiddle line and bottom lines 
orrespond to its �rst and se
ond order derivatives, respe
tively.The se
ond zero 
rossing o

urs at a point of minimum slope.

How the zero 
rossings should be dete
ted is not a trivial, espe
ially in the 
ase of dete
tion onpixels, and is rarely des
ribed pre
isely in the literature, albeit 
onsiderably di�erent te
hniquesmay be used:1. 
lassify as physi
al edges those pixels with at least one neighbor pixel having a di�erentsignal in the estimated se
ond derivative (this method yields two pixels thi
k estimatedphysi
al edges);2. 
lassify as physi
al edges the pixels under the same 
onditions as before but only thosehaving a spe
i�
 sign (e.g., positive se
ond derivative); or
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3. use a set of predi
ates for the 
lassi�
ation.This latter solution has been proposed by Huertas and Medioni [75℄. A set of predi
ates is usedfor the dete
tion of zero 
rossings in se
ond derivative edge dete
tion methods. They also pro-pose a method to lo
alize physi
al edges with subpixel a

ura
y with little extra 
omputationale�ort.However, note that the above te
hniques are not 
ompletely spe
i�ed:1. Whi
h type of neighborhood should be used?2. How should \di�erent sign" be interpreted? Should some thresholding be used so thatsmall values of the se
ond derivative are 
onsidered as zeros?3. How should zeros be dealt with?Sin
e the Lapla
ian is independent of the 
oordinate axis 
hosen, it turns out that its valueis equal to the se
ond derivative in the dire
tion of the gradient plus the se
ond derivativeperpendi
ular to the dire
tion of the gradient. For linear physi
al edges, the later derivative
ontributes only with noise, and, in the 
ase of a 
urved physi
al edge, introdu
es an o�setinto the se
ond derivative. This results in a higher sensitivity to noise and larger biases in theestimated physi
al edge position for the Lapla
ian methods.Another method is the so-
alled \non-maximum suppression in the gradient dire
tion." Thismethod 
he
ks whether the magnitude of the gradient is a lo
al maximum in the dire
tion ofthe gradient.A further possibility would be to 
lassify tentatively as physi
al edges all pixels where themagnitude of the gradient is high enough, i.e., the simple thresholding mentioned before, andthen to use a thinning te
hnique in order to obtain one pixel thi
k estimated physi
al edges.The 
hosen solution must take into a

ount the relative merits of ea
h te
hnique both in terms ofphysi
al edge lo
alization and in terms of the asso
iated 
omputational e�ort. Spe
i�
ally, wheneÆ
ien
y is at a premium, simple solutions should always be 
onsidered as good 
andidates.

Derivative 
omputation
A

ording to Bernsen [8℄, there are at least four types of methods to 
ompute the deriva-tive:1. 
onvolve the image with a kernel obtained by sampling the derivatives of the 2D Gaussianfun
tion (e.g., LoG [108℄);2. use instead the sampled derivatives of the 2D symmetri
 exponential fun
tion (thismethod is similar to the �rst one, the only di�eren
e being the kind of smoothing appliedto the image prior to derivative 
al
ulation);3. use the derivatives of a tilted-plane approximation to the image in a n�n window aroundthe given lo
ation|up to �rst order derivatives only; or4. use instead the derivatives of a third order bivariate polynomial approximation in a n�nwindow around the given lo
ation|up to third order derivatives only (e.g., [66℄).



98 CHAPTER 4. SPATIAL ANALYSIS
Bernsen [8℄ showed that the last method is very similar to the �rst one for least squares poly-nomial approximations with Gaussian weights.
Sele
tion of 
omponentsA

ording to Bernsen's evaluation [8℄, the best operators are those that use a gradient magnitudetransition strength 
omputation, the zero 
rossings of the se
ond derivative in the dire
tion ofthe gradient for edge lo
alization and the sampled derivatives of the 2D Gaussian fun
tion.
ExamplesIn order to illustrate the division into 
omponents proposed in [8℄, two simple and well known2D s
alar edge dete
tion operators are presented in the next se
tion.
Sobel operatorOne of the most 
ommon 2D s
alar edge dete
tion segmentation operators is the Sobel op-erator [55℄. This operator 
al
ulates transition strength of an image f from an estimateG = Sobel(f) of the magnitude of the gradient in ea
h pixel. The gradient is estimated usingaveraged �rst order di�eren
es in the horizontal and verti
al dire
tions, whi
h 
an be provedto be equivalent to using the derivatives of an appropriately weighted tilted-plane least squaresapproximation of the image in a 3� 3 window around ea
h pixel

rf [i; j℄ = 264 Æf [i;j℄ÆxÆf [i;j℄Æy
375 ;

with Æf [i; j℄Æx � 18afx[i; j℄ = 18a� f [i� 1; j + 1℄ + 2f [i; j + 1℄ + f [i+ 1; j + 1℄� f [i� 1; j � 1℄� 2f [i; j � 1℄� f [i+ 1; j � 1℄� (4.1)
and Æf [i; j℄Æy � 18bfy[i; j℄ = 18b� f [i� 1; j � 1℄ + 2f [i� 1; j℄ + f [i� 1; j + 1℄� f [i+ 1; j � 1℄� 2f [i+ 1; j℄� f [i+ 1; j + 1℄�; (4.2)
where a and b are the horizontal and verti
al dimensions of the re
tangular pixels, i.e., � = abis the pixel aspe
t ratio.The magnitude of the gradient is estimated bykrf [i; j℄k � 18aG[i; j℄ = 18aqjfx[i; j℄j2 + �2jfy[i; j℄j2; (4.3)



4.2. HIERARCHIZING THE SEGMENTATION PROCESS 99
where the fa
tor 18a is dropped from G be
ause the resulting values will later be 
ompared to athreshold, whi
h may be adjusted a

ordingly. Often the pixel aspe
t ratio � is also droppedfrom the expression, sin
e it is usually 
lose to the unity.Pixels for whi
h G[i; j℄ > t, where t is a given threshold, are 
onsidered 
andidate physi
al edgepixels.Edge lo
alization is based on a simple thinning algorithm [100℄: only 
andidate pixels whi
hare lo
al maxima in terms of the estimated gradient in the horizontal (i.e., G[i; j℄ > G[i; j � 1℄and G[i; j℄ > G[i; j + 1℄) or verti
al (G[i; j℄ > G[i� 1; j℄ and G[i; j℄ > G[i+ 1; j℄) dire
tions are
onsidered physi
al edge pixels. Besides that, in order to avoid \minor edge lines in the vi
inityof strong edge lines," the following additional 
onstraints are imposed:1. If G[i; j℄ is a lo
al maximum in the horizontal dire
tion, but not in the verti
al dire
tion,[i; j℄ is a physi
al edge pixel when:jfx[i; j℄j > kjfy[i; j℄j (4.4)2. If G[i; j℄ is a lo
al maximum in the verti
al dire
tion, but not in the horizontal dire
tion,[i; j℄ is a physi
al edge pixel when:jfy[i; j℄j > kjfx[i; j℄j (4.5)The value of k is usually set around 2.An example of appli
ation of the Sobel operator to the �rst image of the \Carphone" sequen
e(see Appendix A) 
an be seen in Figure 4.1.

Figure 4.1: \Carphone": appli
ation of the Sobel operator, with thresholding and thinning, tothe luma of the �rst image (using t = 40, k = 2, and � = 1).
Lapla
ian of the Gaussian operatorAnother 
ommon 2D s
alar edge dete
tion segmentation operator is the LoG operator [108, 100℄.This name is usually given to any operator using the LoG for edge lo
alization purposes. Some
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freedom remains about:1. transition strength;2. digitalization of the LoG; and3. zero 
rossing dete
tion method.The operator herewith presented 
al
ulates the transition strength using the estimate of the gra-dient magnitude as given by (4.3). Thus, this operator has two di�erent derivative 
omputationmethods: sampled derivatives of the two dimensional Gaussian fun
tion (for edge lo
alization),and tilted plane approximation (for transition strength 
omputation).Pixels for whi
h G[i; j℄ > t, where t is a given threshold, are 
onsidered 
andidate physi
al edgepixels.Edge lo
alization uses the zero 
rossings of the Lapla
ian (of the image smoothed by a Gaussian).A zero 
rossing is 
onsidered at ea
h 
andidate physi
al edge pixel having positive se
ondderivative and for whi
h any of its 4-neighbors has negative se
ond derivative. However, after
al
ulating the LoG and before lo
alization, pixels with se
ond derivative inferior to a giventhreshold t2 are set to zero.The �lter w[�℄ for the 
omputation of LoG has a 2n + 1 � 2n + 1 region of support, wheren = round(4:5�), and is 
al
ulated by

w[i; j℄ = round�K �2� i2 + j2�2 � exp�� i2 + j22�2 �� with i; j = �n; : : : ; n,
where K is a s
aling 
onstant. It 
an be 
hosen to provide appropriate approximation or su
hthat Pni;j=�nw[i; j℄ = 0. If the sum, for a given K, does not yield zero, the values of w[�℄ 
anbe manipulated \by small amounts" [60℄.The s
ale of the operator is given by �, whi
h is the standard deviation of the Gaussian. In [60℄,n is 
al
ulated so that all non-zero sampled and quantized 
oeÆ
ients of w[�℄ are in
luded inthe �lter's region of support. The presented formula provides a de
ent approximation.The result of applying this operator to the �rst image of the \Carphone" sequen
e 
an be seenin Figure 4.2.
3D operators
3D operators, whi
h operate on more than one image, do not really aim at dete
ting physi
aledges. They 
an, however, help to dete
t regions that 
hanged from one image to another inan image sequen
e, and the largest 
hanges are usually lo
ated near the physi
al edges of s
eneobje
ts. Thus, this information 
an be used to restri
t the sear
h area of more pre
ise 2D edgedete
tion operators applied afterwards. This 
an be useful when dete
ting the boundaries ofmoving obje
ts over a stati
 ba
kground [99℄.
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Figure 4.2: \Carphone": appli
ation of the LoG operator to the luma of the �rst image (t = 10,� = 2 and hen
e n = 9, K = 3208 and t2 = 5000).
Image di�eren
esThe simplest of the 3D operators is the image di�eren
es. Given two su

essive images fn andfn�1, it 
al
ulates the di�eren
e image DnDn = Di�[fn; fn�1℄su
h that Dn[i; j℄ = kfn[i; j℄� fn�1[i; j℄k: (4.6)
The di�eren
e operator is usually followed by some type of thresholding.This operator is useful as a �rst step in an edge dete
tion segmentation te
hnique be
ause it 
anbe used to dete
t the zones that have 
hanged signi�
antly from one image to the next. Thisassumes that the obje
ts of interest move in front of a stati
 ba
kground. If the ba
kground alsomoves, then global motion, usually 
orresponding to 
amera movements, 
an be 
an
eled outof fn�1 in order to stabilize the image before applying the di�eren
e operator. See Se
tion 5.5for a dis
ussion of image stabilization methods.The result of the appli
ation of the image di�eren
e operator to the \Carphone" sequen
e, withand without image stabilization, 
an be seen in Figure 4.3.
Di�erent motionAnother interesting s
alar 3D operator was proposed by Ca�orio and Ro

a in [17℄. Thisoperator 
lassi�es ea
h pixel of an image as belonging to one of \n moving areas with di�erentdispla
ements and a [�xed℄ ba
kground area" using \a Viterbi algorithm with n+1 states" [48℄.
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(a) Without image stabilization.

(b) With image stabilization.
Figure 4.3: \Carphone": appli
ation of the image di�eren
es operator (without thresholding)to the luma of images 26 and 27 (di�eren
es multiplied by 5 and inverted for display purposes).
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It 
an also be useful when trying to obtain the boundaries of moving obje
ts in front of a �xedba
kground.
4.2.2 Te
hnique levelThe middle level in a segmentation pro
ess is the te
hnique level. Ea
h segmentation te
hniquemay use several low-level segmentation operators and integrate their results into a 
oherent par-tition of the image. Topologi
al 
onsiderations are used often at this level: boundary dete
tionte
hniques, for example, 
an use edge dete
tion operators followed by 
ontour 
losing, 
learingof isolated edge pixels, et
.Segmentation te
hniques 
an be 
lassi�ed a

ording to several attributes, whi
h will be pre-sented in the next se
tions.
Spatial primitivesThe �rst attribute 
onsidered is the kind of primitives addressed by the te
hnique. There arebasi
ally three types of segmentation te
hniques:1. te
hniques aiming at boundary dete
tion, i.e., te
hniques attempting to dete
t obje
tor region boundaries from the pla
es where there are sudden 
hanges of illumination,texture, et
. (framework is 
ontour-oriented segmentation);2. te
hniques aiming at region dete
tion, i.e., te
hniques dete
ting regions with uniform
hara
teristi
s, su
h as intensity, 
olor, texture, et
. (framework is region-oriented seg-mentation); and3. te
hniques whi
h aim at dete
ting both boundaries and regions (see for instan
e [65℄).
MemorySegmentation te
hniques may also be divided a

ording to the use of memory:1. te
hniques with memory use information from previous images; and2. memoryless te
hniques do not use information from previous images in the image se-quen
e.Te
hniques with memory typi
ally use 3D operators, i.e., operating on more than one image,possibly together with 2D operators. Memoryless te
hniques use only 2D operators.
Features usedIf te
hniques with memory are being used and the previous image is available, then it is possibleto estimate whi
h parts of the image su�ered di�erent movements (see [17℄ for an early example).Stri
tly speaking, this is motion-based segmentation, and thus 
ould also be 
lassi�ed as a tool
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towards time analysis of image sequen
es. This kind of te
hniques is asso
iated with a di�erenttype of segmentation whi
h was not mentioned in the introdu
tion: segmentation into regionsof uniform motion.Thus, there are:1. motion-based te
hniques, when segmentation is based on motion; and2. 
olor-based te
hniques, when segmentation is based on spatial features su
h as 
olor ortexture.
Ve
torial vs. s
alarSegmentation te
hniques will be designated a

ording to the number of 
olor 
omponents theywork with:1. s
alar te
hniques make use of a single 
olor 
omponent, regardless of whether more areavailable; and2. ve
torial te
hniques use several 
olor 
omponents.
Knowledge-basedAnother feature of segmentation at te
hnique level is the availability of a priori knowledgeabout the images to be segmented, that is, information about the image model that 
an beused:1. if a priori knowledge is available, segmentation te
hniques are knowledge-based;2. otherwise segmentation te
hniques are generi
.
4.2.3 Algorithm levelThe highest level in a segmentation pro
ess is the algorithm level. Segmentation algorithmsintegrate the results obtained by the lower level segmentation te
hniques (and possibly alsooperators) and attempt to assess and 
ontrol the attained segmentation quality. There areseveral features distinguishing the di�erent segmentation algorithms. A few are des
ribed inthe next se
tions.
Segmentation qualitySegmentation quality is an important feature of segmentation algorithms. There are three mainissues related to quality:
Quality estimationHow is the attained segmentation quality estimated?



4.2. HIERARCHIZING THE SEGMENTATION PROCESS 105
Quality estimation obje
tivesWhat will the estimated segmentation quality be used for?Quality 
ontrolHow is the segmentation quality 
ontrolled?
Quality estimationThe estimation of the quality attained depends on the te
hniques used, and is still, to a 
ertainextent, an unsolved issue, at least if done in an automati
 way. Of 
ourse, it is possible toestimate the quality of a given segmentation if the stru
ture of the image is known beforehand.This is what is done in the papers whi
h attempt to evaluate segmentation algorithms, or evensegmentation operators su
h as edge dete
tors: see [187, 8, 47℄. This is not possible, however,when the 
orre
t or desired segmentation is not known before hand (otherwise why should onewaste time reprodu
ing a known result?).
Quality estimation obje
tivesThe estimation of the segmentation quality 
an be used:1. for 
hanging the parameters of the segmentation so that a desired segmentation qualityis attained, i.e., quality estimation for (feedba
k) 
ontrol; or2. for de
iding whether the segmentation results should be a

epted or reje
ted.
Quality 
ontrolThe measure of segmentation quality may be used to adjust segmentation parameters (e.g., oper-ator thresholds) in order to improve, through feedba
k, the segmentation quality of:1. the next image, in the 
ase of delayed segmentation quality 
ontrol; or2. the 
urrent image, in the 
ase of immediate quality 
ontrol.Delayed segmentation quality 
ontrol has a delayed response to 
hanges in the sequen
e tosegment. Hen
e, it 
an only be applied if these 
hanges are expe
ted to be slow. On the otherhand, immediate segmentation quality 
ontrol 
an only be used if the segmentation algorithmbeing used is not too 
omputationally demanding.
S
ale and resolutionOne of the features of segmentation algorithms 
onsidered is the s
ale or s
ales at whi
h theyoperate. That is, the s
ale at whi
h di�eren
es in the properties that 
hara
terize the segmentedregions are dete
ted. A small s
ale segmentation algorithm will be able to dete
t and segmentdetailed regions, e.g., the details of a textured surfa
e, while a large s
ale segmentation algorithmwill be able to dete
t only less detailed 
hanges in the properties of the regions.
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The s
ale of an algorithm is usually 
ontrolled by adjusting s
ale parameters in the low-leveloperators used. For instan
e � in the LoG operator of Marr and Hildreth [108℄. An algorithmmay use te
hniques at di�erent s
ales and integrate them into a many-s
ale des
ription of thes
ene [18℄. Jeong and Kim [85℄ proposed a method for adaptively sele
ting the s
ale along theimage.Resolution is another feature of segmentation algorithms. It is related to the resolution ofthe segmentation of the image. The resolution usually depends on the appli
ation at hand.Segmentation 
an be done at pixel resolution or, for instan
e, at MB (Ma
roBlo
k) resolution(16� 16 pixels).Even though segmentation s
ale and resolution are related, there are a few di�eren
es betweenthe two, the most important being that s
ale is 
on
erned with the level of detail taken intoa

ount during the segmentation while resolution is 
on
erned with the level of detail ne
essaryafter the segmentation. The di�eren
e 
an be made 
lear by means of an example. Suppose thatsegmentation is to be used in a H.261 en
oder merely by 
hanging the quantization step (whi
his �xed for ea
h MB). Then, a MB resolution for the segmentation is 
learly enough. However,in order to 
learly determine the speaker's position against the ba
kground, a segmentations
ale mu
h smaller than MB will obviously be needed (see Se
tion 4.4).
MemoryA segmentation algorithm may also be 
lassi�ed a

ording to its use of the temporal informationbetween adja
ent images in an image sequen
e. This use 
an be done at the te
hnique or evenoperator level, for instan
e by using 3D operators, or only at algorithm level, for instan
e byrestri
ting the sear
h of the edges of physi
al obje
ts to a small region around their previouspositions, possibly by using motion information extra
ted from the image sequen
e. Other usesof memory will be seen in Se
tion 4.7.1, where a region-oriented segmentation algorithm makinguse of memory is proposed. The segmentation algorithm 
an thus be:1. memoryless if temporal information is not used; and2. with memory if temporal information is used.
Knowledge-basedSegmentation at algorithm level, as happened at te
hnique level, 
an be 
lassi�ed a

ording tothe availability of knowledge:1. if a priori knowledge is available, segmentation algorithms are knowledge-based;2. otherwise segmentation algorithms are generi
.
4.2.4 Con
lusionsIn summary, the various levels in the segmentation pro
ess 
an be 
lassi�ed a

ording to:
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Operator level1. Spatial features dete
ted (edge or region dete
tion or both).2. Number of 
omponents used (ve
torial or s
alar).3. Number of images operated on (2D or 3D).Te
hnique level1. Segmentation operators used.2. Spatial features dete
ted (boundary or region dete
tion or both).3. Use of temporal information (with memory or memoryless).4. Features used (motion or 
olor).5. Number of 
omponents used (ve
torial or s
alar).6. Use of a priori information (knowledge-based or generi
).Algorithm level1. Segmentation te
hniques (and eventually segmentation operators) used.2. Quality estimation obje
tives (
ontrol or a

eptan
e/reje
tion de
ision).3. Quality estimation method.4. Type of quality 
ontrol (immediate or delayed or none).5. S
ale of the segmented features.6. Resolution of the resulting 
lassi�
ation.7. Use of temporal redundan
y (with memory or memoryless).8. Use of a priori knowledge (knowledge-based or generi
).
A diagram with the proposed segmentation pro
ess hierar
hy and the 
lassi�
ation 
riteria forea
h of its levels is show in Figure 4.4.
4.2.5 Pre-pro
essing
Pre-pro
essing 
an be an important step in a video en
oder, where it is often seen as a part ofimage analysis. It 
an o

ur in two di�erent positions:

1. before analysis proper, pre-pro
essing 
an be used used to emphasize important imagefeatures and to eliminate details whi
h are irrelevant to the subsequent analysis; and2. before en
oding (after analysis2), pre-pro
essing 
an be used to 
hange the input se-quen
e's 
hara
teristi
s, a

ording to the analysis results, so that the 
oding 
an be mademore eÆ
ient (e.g., in the framework of videotelephony, by low-pass �ltering the ba
k-ground of the images after having dete
ted the speaker's position through knowledge-basedsegmentation, or by manipulating 
oding parameters su
h as the DCT quantization step,in the 
ase of 
lassi
 
ode
s).2It is a
tually post-pro
essing relative to analysis.
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algorithm:

technique:

operator:

region / edge detection

vectorial / scalar

2D / 3D

region / boundary / both

motion / color

vectorial / scalar

with memory / memoryless

knowledge-based / generic

scale resolution

with memory / memoryless

knowledge-based / generic

quality estimation method

quality estimation for:

control / rejection / both

quality control:

immediate / delayed

Figure 4.4: Segmentation pro
ess hierar
hy and 
lassi�
ation for operator, te
hnique, and algo-rithm level.
4.3 Region- and 
ontour-oriented segmentation algo-rithms
This se
tion overviews several well-known segmentation algorithms and attempts to frame themwithin the 
ommon theory of SSTs. First, the basi
 versions of region merging and region grow-ing algorithms are shown to be really algorithms solving di�erent graph theoreti
al problems,all involving SSTs. Then, it will be shown that the distin
tion between region- and 
ontour-oriented segmentation is not as 
lear-
ut as it may seem at �rst: the basi
 
ontour-
losingalgorithm is shown to be the dual of the basi
 region merging algorithm, both being des
ribableagain re
urring to SSTs. Finally, the problem of globalization of the information along thesegmentation pro
ess is introdu
ed, along with the problem of 
hoosing appropriate homogene-ity 
riteria for the regions, i.e., the problem of 
hoosing an appropriate region model. It willalso be shown that, in this framework, segmentation algorithms 
an be seen as non-optimalalgorithms whi
h attempt to minimize a 
ost fun
tional, typi
ally related to an approximationerror. Globalization methods, region models, and 
ost fun
tional, are what really distinguishesall the algorithms des
ribable in the SST framework.
4.3.1 Contour-oriented segmentationAs said before, two di�erent approa
hes 
an be used for segmentation. The �rst approa
haims at identifying transitions in the image features whi
h are relevant to the task at hand,
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and whi
h may be transitions in gray level, 
olor, texture, motion, et
. Most of the availabletransition dete
tion methods were developed as �rst steps toward identi�
ation of obje
t edgesin the sensed 3D natural world of whi
h the image is a proje
tion (e.g., [108℄). Hen
e, the termedge dete
tion, used in all the literature and throughout this thesis, stu
k in 
onne
tion to thelow-level transition dete
tion operators.Contour-based segmentation algorithms typi
ally in
lude edge dete
tion at operator level. Mostedge dete
tion operators 
lassify pixels or edges as either deemed to belong to a physi
al obje
tedge or not, and this de
ision is made by looking at a small neighborhood of the given pixelor edge, 
al
ulating a few parameters, and 
omparing them to thresholds. Even though somethresholding methods introdu
e, to a 
ertain extent, more global information, e.g., the hysteresisthresholding for edge lo
alization proposed by Canny [18℄, edges are mostly dete
ted in a ratherlo
al form, and hen
e do not usually form 
losed boundaries.A further problem with edge dete
tion operators is that they often require the tuning of anumber of parameters. A typi
al parameter is the transition strength threshold (or thresholds,in the 
ase of hysteresis), whi
h if set too high leads to edges far from 
onstituting 
losed
ontours, and if set to low leads to many erroneously dete
ted edges. The sele
tion of theoperator parameters is thus not trivial. Some solutions have been proposed in the past forautomating parameter sele
tion [85, 151℄.
Contour 
losingThe result of edge dete
tion is a mapping of pixels or edges into one of two 
lasses: elements
orresponding to large transitions and elements 
orresponding to smooth, uniform zones (interms of the image features of interest). Clearly, su
h approa
hes do not dire
tly lead to apartition of the image|the dete
ted edges may not form 
losed boundaries. Hen
e, edge dete
-tion operators are usually followed by 
ontour 
losing te
hniques and then by algorithms whi
h
lassify as di�erent regions the 
onne
ted 
omponents separated by the estimated 
ontours.Assuming that the transitions are dete
ted at edges (boundaries of the pixels), perhaps the
on
eptually simplest method of obtaining 
losed 
ontours is to apply a threshold to the resultof some transition strength 
omponent, to build the subgraph of the image line graph indu
edby the dete
ted edges, and �nally to remove all the bridges in this subgraph, thus obtaining a2-ar
-
onne
ted graph, whi
h indeed segments the image into several regions. If the transitionstrength threshold is de
reased su

essively, so that edges are dete
ted with non-in
reasingstrength, then a su

ession of partitions of the image 
an be obtained, ranging from a singleregion 
overing the whole image, to a region per pixel, when all the edges are dete
ted. Thisalgorithm will be 
alled the basi
 
ontour 
losing whenever the transition strength of an edgeis 
al
ulated simply as the distan
e between the 
olors of the two pixels it bounds.
4.3.2 Region-oriented segmentationThe se
ond approa
h to segmentation attempts to deal with homogeneity instead of dissimi-larities (i.e., transitions). Su
h methods usually lead dire
tly to a partition of the image, and
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hen
e the aforementioned division of the segmentation pro
ess into operator, te
hnique, andalgorithm level is not as 
lear as for 
ontour-oriented segmentation.Two of the most referen
ed segmentation methods in the literature [154, 68℄ are region growingand split & merge. Other more re
ent 
ontenders in this �eld are watershed segmentation, basedon mathemati
al morphology theory, and SST segmentation. These segmentation algorithms,all region-oriented, will be brie
y overviewed in the following se
tions, and their basi
 versionswill be des
ribed and 
ompared. But before that, region segmentation will be de�ned formally.
A formal de�nition of segmentation
Segmentation 
an be seen as an optimization problem. Assuming a uniformity measure has beenestablished for ea
h 
lass in a partition and for the partition as a whole, the optimal partition
an be de�ned as that whi
h:1. for a given maximum number of 
lasses, maximizes the overall uniformity; or2. for a given minimum overall uniformity, minimizes the number of 
lasses.This de�nition of segmentation la
ks a very important 
on
ept: the spatial relation of the pixels.Granted, su
h 
on
erns may be partially embedded into the uniformity measure, but it wouldbe useful if they 
ould be made more expli
it. Without su
h spatial 
on
epts, all permutationsof the pixels values in a given image lead to essentially the same segmentation: a segmentationwhi
h is based solely on the pixel 
olors. Without spatial relationships taken into a

ount (i.e.,using only the measurement spa
e [68℄) segmentation is essentially a 
lustering problem.A more restri
tive and interesting de�nition uses 
onne
ted 
lasses instead of possibly dis
on-ne
ted 
lasses. The optimal partition 
an thus be de�ned as that whi
h:1. for a given maximum number of 
onne
ted 
lasses, maximizes the overall uniformity; or2. for a given minimum overall uniformity, minimizes the number of 
onne
ted 
lasses.With this de�nition, by taking into a

ount also the spatial relationships, segmentation 
an beseen as 
lustering in both spatial and measurement spa
e [68℄. It is also quite an intra
tableproblem be
ause the solution spa
e is huge. For an image with 100� 100 pixels, and assuminga partition into 4 dis
onne
ted 
lasses, the total number of possible partitions to 
onsider is410000 � 106021. When 
onne
ted 
lasses are required, the solution spa
e is 
onsiderably smaller,but still too large to 
onsider a brute for
e sear
h for the optimum. Thus, most segmentationalgorithms are a
tually non-optimal solutions of the stated problem.Considerable latitude exists in the 
hoosing of appropriate uniformity measures for ea
h 
lassand for the whole partition. While some may be so simple as the range of grey levels inside agiven 
lass, others may re
ur to more or less sophisti
ated models for the 
olor variation insideea
h 
lass, an thus to an uniformity measure whi
h is essentially the inverse of the modelingerror. Both the problems of non-optimal approximations to the optimal segmentation and ofregion modeling will be dis
ussed at more length in Se
tion 4.3.4.
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Region growing
Region growing algorithms start with an initial set of seeds or markers (small sets of pixels,possibly dis
onne
ted) to whi
h adja
ent pixels are su

essively merged if this merging leads toan homogeneous region a

ording to some 
riterion. Regions stemming from di�erent seeds arenever merged. The pro
ess is 
omplete when every pixel is assigned to one of the regions andthere are no pairs of adja
ent regions stemming from the same seed. Stri
tly speaking, regiongrowing does not attempt to solve the segmentation problem. The problem solved is a
tually arestri
tion of the original problem, where pixels from di�erent seeds are not allowed to belongto the same 
lass. Noti
e that the number of seeds is a lower bound to the number of 
lasses,but the two are not always equal: a seed may lead to several non-adja
ent 
lasses.The use of seeds is both a 
urse and a blessing. On the one hand, su
h algorithms by themselvesare unable to perform automati
 segmentation. However, several methods have been proposedin the literature to automati
ally identify appropriate seeds, espe
ially in the 
ase of watershedsegmentation, a parti
ular breed of region growing segmentation algorithm whi
h will be dis-
ussed below. On the other hand, region growing segmentation algorithms lend themselves veryeasily to supervised segmentation, in whi
h a (human or not) supervisor 
lassi�es some pixelsof the image as belonging to di�erent 
lasses, and then the segmentation algorithm attempts tohonor these hints.The basi
 version of the region growing algorithm starts by labeling the pixels in ea
h seed witha label whi
h is unique for that seed. All other pixels are initially unlabeled. Then, of all theunlabeled pixels whi
h are adja
ent to at least one labeled pixel, the one with the smallest 
olordistan
e to an adja
ent labeled pixel is labeled with the label of that pixel. When all pixels arelabeled, the labels represent the partition of the original image. Hen
e, the �nal partition hasas many 
lasses as there are seeds, some of whi
h may have more than one region.
Watershed segmentation
Watershed segmentation has its roots in a topographi
 problem: given a digitized topographi
surfa
e, how 
an draining basins be identi�ed? Or, by duality, where are the watersheds of thebasins lo
ated? The solution to this problem involves identifying lo
al minima, pier
ing theseminima, and slowly immersing the topographi
 surfa
e in some (virtual) liquid. Whenever liquid
owing from di�erent sour
es is about to mix, a dam is built. After total immersion the damsidentify the watersheds of the basins, and ea
h basin 
orresponds to a lo
al minimum. Thispro
ess is very ni
ely des
ribed in [132℄. This method of identifying basins in a topographi
surfa
e 
an be seen as a form of segmentation. The problem with the method is that it leads toover segmentation. This stems from the fa
t that ea
h lo
al minimum is 
onsidered to give riseto an individual basin, no matter how small. The standard solution to this problem involvespier
ing the topographi
 surfa
e at those lo
ations deemed to represent individual basins andapply the algorithm without further 
hanges. Sin
e the number of liquid origins is redu
ed, so isthe �nal number of basins. In a sense, as was re
ognized in [132℄, su
h solution merely shifts theproblem: how to sele
t where to pier
e the topographi
 surfa
e? However, the analogy betweenwatershed segmentation and region growing segmentation is immediate, and the same 
omments
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apply as in the 
ase of region growing: watershed segmentation may be a good te
hnique forin
lusion in some 
omplete algorithm whi
h either (a) de
ides by itself or (b) asks some humansupervisor where to pier
e the surfa
e (where to lo
ate the seeds, in the 
ase of region growing).This method of identi�
ation of basins in digitized topographi
al surfa
es was soon re
ognized tohave a high potential in image segmentation [132℄. However, two problems had to be solved: (a)typi
al images have values in Z3 , so that the analogy with heights of terrains is not immediate,and (b) even in the 
ase of grey s
ale images, taking values in Z, the basins of the grey levelstaken arti�
ially as heights of some imaginary terrain are hardly what image segmentationaims at. This latter problem was solved by re
ognizing that, if segmentation aims at dete
tingreasonably uniform regions, then watersheds should be lo
ated in pixels where the gradient ishigh. Hen
e, the watershed segmentation started to be applied to the absolute value of theimage gradient. The gradient, in the original papers [132℄ and [193℄ was usually 
al
ulatedre
urring to morphologi
al �lters. Estimating derivatives, however, is an ill posed problem,hen
e other solutions working dire
tly on the original image were ne
essary.The above problems are addressed in [131℄ (see also [177℄), whi
h presents a generi
 watershedsegmentation algorithm of whi
h the already des
ribed (
lassi
al) watershed segmentation algo-rithm, working on a topographi
al surfa
e, and the basi
 region growing algorithm are parti
ular
ases. This paper also dis
usses brie
y the problem of sele
ting an appropriate 
olor distan
e,whi
h is 
losely related to the problem of sele
ting a 
olor spa
e. Its proposal is to sele
t theHSV (Hue, Saturation, and Value) 
olor spa
e. However, see dis
ussion in Se
tion 3.1.1.A
tually, the region growing version of the generi
 watershed segmentation algorithm is notexa
tly the basi
 region growing algorithm as des
ribed in the previous se
tion. The regiongrowing version of watershed segmentation does take into a

ount that, when at a 
ertain stepof the algorithm there is a tie, that is, several di�erent pixels may be aggregated to di�erentregions, there are solutions whi
h are better than others. In analogy with the 
lassi
al watershedsegmentation, whi
h tried to 
ood plateaus with liquid 
owing at a 
onstant speed from ea
hsour
e, thus lo
ating the watersheds in their \natural" lo
ation in the middle of the plateaus,the region growing version of watershed segmentation solves the problem in a similar way: in
ase of a tie, 
hoose the oldest 
andidate pixel for merging. If, as will be seen shortly, basi
region growing 
an be implemented using the simple extension of Prim's 
onstru
tive algorithmfor SSSSkT, then the region growing version of watersheds, with its ni
e treatment of ties, 
anbe implemented by the same algorithm with a further restri
tion: the pixel queue must be notonly hierar
hi
al but also ordered: pixels in the same hierar
hi
al level should be organized in aqueue (�rst 
ame �rst served). In the parti
ular 
ase of digital images where the image valuestake only a relatively small set of values (whi
h a
tually is the 
ase in most situations, sin
eusually 8 and at most 10 bits are used to en
ode the 
olor 
omponents of ea
h pixel), veryeÆ
ient algorithms 
an be developed [193℄.There are a few reasons why ties should not worry us too mu
h, though. First, it is probable thatin the future more and more bits are used to represent images in intermediate steps of pro
essing.As a 
onsequen
e, when some sort of �ltering is performed on images before segmentation, thelikelihood of ties de
reases and the e�e
ts of handling them blindly will probably not be severe.But the best of all reasons is that it will allow us to ni
ely 
ompare several di�erent segmentationalgorithms under the 
ommon framework of SSTs.
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Region mergingRegion merging algorithms, unlike region growing algorithms, do not re
ur to seeds. A partitionof an image is input to the algorithm, typi
ally the trivial partition where ea
h pixel is a single
lass, and at ea
h step of the algorithm pairs of adja
ent regions are examined and mergedinto one if the result is deemed homogeneous. This version of the algorithm is essentially theRAG-MERGE of [154℄. This algorithm 
an be improved if the pair of regions to be merged atea
h step is sele
ted as the one leading to the greater uniformity. In this 
ase, the algorithm is
alled RSST [134℄, for reasons whi
h will be shown later.The basi
 version of the region merging algorithm merges pairs of regions a

ording to the 
olordistan
e between adja
ent pixels ea
h belonging to ea
h of the two adja
ent regions 
andidate formerging. Needless to say, there 
an be several su
h pairs of pixels for a given pair of adja
entregions. The smallest 
olor distan
e of all pairs of pixels in the above 
onditions is takenas representative of the uniformity of the union of the two regions. Granted, this algorithmis 
learly poorer than RSST and RAG-MERGE above. Its interest will be seen later, whendis
ussing methods of globalizing the de
isions taken in the basi
 algorithms that lead to thementioned RSST and RAG-MERGE algorithms.
Split & mergeIn 1976, Horowitz and Pavlidis [72℄ developed an image segmentation algorithm 
ombiningtwo methods used independently until then: region splitting and region merging. In the �rstphase, region splitting,3 the image is initially analyzed as a single region and, if 
onsiderednon-homogeneous a

ording to some 
riterion, it is split into four re
tangular regions. Thisalgorithm is re
ursively applied to ea
h of the resulting regions, until the homogeneity 
riterionis ful�lled or until regions are redu
ed to a single pixel. At the end of the split phase, theregions 
orrespond to the leaves of a QPT (Quarti
 Pi
ture Tree).4 If split were the only phaseof the segmentation algorithm, the segmented image would have many false boundaries, sin
esplitting is done a

ording to a rather arbitrary stru
ture, the quad tree. The se
ond phase ofthe algorithm is region merging,5 where pairs of adja
ent regions are analyzed and merged iftheir union satis�es the homogeneity 
riterion.Several problems may o

ur in split & merge algorithms, namely arti�
ial or badly lo
atedregion boundaries. These problems usually stem from the split 
riterion used, whi
h is thusdeterminant for the �nal segmentation quality.In 1990, Pavlidis and Liow [158℄ presented a method that uses edge dete
tion te
hniques to solvethe typi
al split & merge problems (e.g., boundaries that do not 
orrespond to edges and thereare no edges nearby; boundaries that 
orrespond to edges but do not 
oin
ide with them; edgeswith no boundaries near them). The method is applied to the over-segmented image resulting3Horowitz and Pavlidis a
tually de�ne the �rst phase as the split & merge phase and the se
ond as thegrouping phase. However, the �rst one 
an be simpli�ed (though this 
an make it less 
omputationally eÆ
ient)to a simple split if one starts by 
onsidering the entire image (level 0).4This a
ronym is the one used in [154℄. QPTs are also know as quad trees.5The grouping phase in [72℄ and RAG-MERGE in [154℄.
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from the split & merge algorithm. It is based on [158℄: \
riteria that integrate 
ontrast withboundary smoothness, variation of the image gradient along the boundary, and a 
riterion thatpenalizes for the presen
e of artifa
ts re
e
ting the data stru
ture used during segmentation."Some ideas along these lines will be dis
ussed later.One of the main bottlene
ks in typi
al segmentation algorithms is memory, even more so than
omputation time. The data stru
tures representing the images, and the asso
iated graphs,whi
h algorithms typi
ally use, 
an easily require hundreds of megabytes. The memory usagegrows with the initial number of regions 
onsidered, parti
ularly in the 
ase of region merging.Split & merge 
an be seen as a good method for trading a redu
tion of memory usage foran in
reased 
omputation time, sin
e after splitting the number of regions is typi
ally smallerthan the number of pixels and splitting 
an be a time 
onsuming task. In
identally, this isthe reason why in [72℄ there is a merging phase within the quad tree stru
ture, whi
h allowsthem to start the pro
ess at a lower level in the tree. But there are other reasons whi
h maylead to the splitting pro
ess. If the homogeneity is based on how well a region model 
onformsto the a
tual 
olor variations along the union of two adja
ent regions, and if this model is
omplex, estimating its parameters for small regions tends to be an ill-de�ned problem. Sin
eestimation for small regions 
an be very sensitive to noise, a tradeo� is thus required betweennoise immunity and a

ura
y in the lo
ation of region boundaries. This tradeo� is typi
al ofthe \un
ertainty prin
iple of image pro
essing" [199℄.
4.3.3 SSTs as a framework of segmentation algorithmsThe �rst attempt to des
ribe several segmentation algorithms within the 
ommon framework ofSSTs was made by Morris et al. [134℄. Region merging and edge dete
tion were both put intothe SSTs framework, even though the des
ription of edge dete
tion with SSTs was not 
omplete.This se
tion will elaborate on the results of [134℄, by des
ribing region merging, region growing,and 
ontour 
losing, all within the framework of SSTs. Noti
e that, even though the results inChapter 3 are usually given for graphs in general, whi
h may be dis
onne
ted, in this 
hapterour attention is 
on
entrated in typi
al images, whose image graphs are 
onne
ted. Hen
e,SSTs are used instead of SSFs.
Region growing as a solution to the SSSSkT problemConsider the basi
 region growing algorithm, as des
ribed before. If all seeds are restri
ted to nomore than one pixel, then this algorithm is exa
tly the 
onstru
tive extended Prim algorithmfor solving the SSSSkT problem. What happens when seeds are allowed to have more thanone pixel? For the sake of 
larity, ea
h seed pixel will be 
onsidered to have a label identifyinguniquely the pixels in the 
orresponding seed: seed pixels of the same seed have the same labelwhile seed pixels from di�erent seeds have di�erent labels. In this 
ase, it 
an be proved that theextended Prim algorithm results in a SSSSkT whi
h is a subgraph of the required (say) multiseeded k-tree. Some separators of the SSSSkT do not 
onne
t trees with seed pixels of di�erentlabels, and thus may be part of the solution. If the bran
hes of the SSSSkT are 
ontra
ted inthe original graph and the true separators (separators of seed pixels with di�erent labels) are
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removed, then the bran
hes of any SSF of the resulting graph 
an be added to the SSSSkTto obtain a solution to the multi seeded problem. It 
an also be proved easily that a solution
an be obtained if Prim's algorithm is 
hanged so as to allow insertion of bran
hes 
onne
tingtrees 
orresponding to seed pixels with the same label. That is, by 
hanging the de�nition ofseparator and 
onne
tor to a

ount for the possible existen
e of multiple pixels in a seed.An immediate 
on
lusion of the pre
eding lines is that region growing is indeed �nding a solutionto the (multi seeded) SSSSkT problem, not a solution to the segmentation problem. The mainreason for this is that the de
ision about whether or not a pixel should be merged to one ofthe growing regions is based solely on the di�eren
e between that pixel and another pixel inthe region, not the 
omplete region. This means that through small 
hanges at ea
h regiongrowth, the regions 
an turn out to be far from uniform. This problem 
an be addressed byglobalization methods, whi
h will be addressed later.Destru
tive algorithms may also be used to obtain the desired segmentation. Use any algorithmto obtain the SST of the image and then 
ut su

essively the heaviest bran
hes in the treestanding between seeds of di�erent markers. Or, whi
h is the same, apply Kruskal's extensionto solve the (multi seeded) SSSSkT problem over the SST. The advantage of this last algorithmonly 
omes about when multiple segmentations with di�erent markers have to be performedover the same image, as for instan
e in supervised segmentation. Cal
ulation of the SST isO(#V lg#V) for planar graphs, but it is done only on
e. On the other hand, solving theSSSSkT problem over the SST runs in linear time. Hen
e, when the number of segmentationsof an image grows, the amortized 
omputation time of ea
h segmentation tends to linearity onthe number of pixels.The watershed algorithm 
an be seen as a spe
ial 
ase of the region growing algorithm wherethe pixel queues are not only hierar
hi
al but also ordered. This 
hanges the way the algorithmworks in 
ases of ties, as will be dis
ussed later. It does not 
hange the asymptoti
 running timeof the algorithms. What does 
hange it however, is if the hierar
hi
al queues are hierar
hizedbased on a weight whi
h 
an only take a small number of values. In this 
ase, as was re
ognizedin [193℄ and [131℄, faster hierar
hi
al (and ordered) queues 
an be devised, taking the form ofarrays of queues, one queue for ea
h possible distin
t weight.
Region merging as a solution to the SSkT problem
The basi
 version of the region merging algorithms is immediately re
ognizable as the Kruskalalgorithm for �nding a shortest spanning k-tree of a graph, in this 
ase the image graph. Thiswas realized by [134℄, whi
h labeled this type of segmentation SST segmentation. Ea
h of the k
omponents of the attained k-tree is hen
e a region of the partition obtained by the algorithm.Two interesting 
on
lusions may be drawn out of this fa
t.Firstly, this tells us that region merging is indeed �nding a solution to the SSkT problem, not asolution to the segmentation problem. The main reason for this is that de
ision about whetheror not two regions should be merged together is based solely on the di�eren
e between twopixels of the two di�erent regions, not on the 
omplete regions. This means that two regionswhi
h have totally di�erent global properties 
an be united by a narrow strip of slowly varying
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pixels. This problem 
an be addressed by using globalization methods, to be dis
ussed later.Se
ondly, it is now evident that destru
tive algorithms may also be used to obtain the desiredsegmentation. Use any algorithm to obtain the SST of the image and then 
ut the heaviestk � 1 bran
hes in the tree. Unlike the destru
tive algorithms for region growing mentioned inthe previous se
tion, 
uts are now done irrespe
tive of the position of the bran
hes within thetree.
Region merging with seedsIt is possible to extend region merging so as to use seeds. In this 
ase, the algorithm simplyprevents regions with di�erent seeds from being merged. This 
an also be seen easily to be the
onstru
tive algorithm for SSSSkT based on the Kruskal algorithm. As before, the de�nitionsof separator and 
onne
tor may have to be adjusted to a

ount for the existen
e of seeds withmore than one pixel. But this algorithm is solving the SSSSkT problem, whi
h was shown inthe previous se
tion to be also solved by the basi
 version of the region growing algorithm.Hen
e, region merging with seeds solves the same problem as region growing: the SSSSkTproblem. The region growing algorithm follows Prim's approa
h while the region mergingapproa
h follows Kruskal's. Noti
e that the result of both algorithms, in terms of the attainedk-tree, is guaranteed to be the same only if there is a single solution to the SSSSkT problem.However, the results may be equal in terms of the identi�ed regions even if the k-trees attainedare di�erent.By using hierar
hi
al ordered queues, Prim's approa
h to the SSSSkT 
an deal with ties (theso-
alled plateaus in the watershed terminology) in a stru
tured way. This is mu
h harder, ifat all possible, with Kruskal's approa
h. However, Kruskal's approa
h is su
h that at ea
h stepof the algorithm the already sele
ted ar
s form a SSSkT of the graph. Hen
e, the algorithmmay be stopped before all seedless regions have been removed. This gives some autonomy tothe algorithm, sin
e it may de
ide that some seedless regions are to be treated as indepen-dent regions. The Prim's approa
h does not allow su
h regions to form, at least when using
onstru
tive algorithms. When using destru
tive algorithms both approa
hes are appropriate.
Region merging and 
ontour 
losing as dualsContour 
losing operates on the line graph, the dual of the image graph. The ar
s of the linegraph are inserted into a tentative edge 
ontour graph in non-in
reasing weight order. At ea
hstep of the algorithm the edge 
ontour graph 
an be obtained from the tentative graph byeliminating all bridges, thus leaving a 2-ar
-
onne
ted planar graph whi
h separates the imageinto several 
onne
ted regions.Suppose that the previous algorithm is modi�ed slightly: ea
h time an ar
 is to be inserted intothe tentative graph, it is �rst 
he
ked whether it would introdu
e any 
ir
uits; if it would, it isput into a queue an left out of the tentative graph. After all ar
s having been 
onsidered, thear
s whi
h are in the queue are inserted one by one into the tentative graph. If the insertions
hedule for ar
s in 
ase of ties is the same, both algorithms yield exa
tly the same result. This
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an be proved easily. First, observe that the �rst part of the modi�ed algorithm is a
tually theKruskal algorithm for the LST. Hen
e, after 
onsideration of all ar
s, the ar
s in the tentativeedge 
ontour graph are the bran
hes of a LST of the line graph, and the ar
s in the queue areits 
hords. What is the 
onstitution of the tentative edge 
ontour graph after insertion of theith 
hord, say 
i? It 
ontains all bran
hes of the LST and 
hords 
 whi
h pre
eded 
i in theinsertion s
hedule, and hen
e are not lighter than 
i. Ea
h su
h 
hord 
 as a 
orrespondingfundamental 
ir
uit 
ontaining no further 
hords, su
h that all its bran
hes b pre
eded 
 in theinsertion s
hedule, and hen
e are not lighter than 
. Hen
e, it is 
lear that all 
ir
uit ar
s inthe tentative edge 
ontour graph pre
eded 
i in the insertion s
hedule or, whi
h is the same,all ar
s following 
i in the insertion s
hedule are either bridges of the tentative edge 
ontourgraph, or 
hords whi
h still haven't been inserted. Removing su
h bridges leaves us with thesame tentative edge 
ontour graph as after insertion of 
i using the �rst algorithm (and thesame insertion s
hedule), so that the two are e�e
tively equivalent.It has been proved, thus, that the basi
 
ontour 
losing algorithm is in fa
t the Kruskal algorithmfor �nding the LST of the line graph followed by su

essive insertion of 
hords into the tree.Ea
h su
h 
hord introdu
es a 
ir
uit. Sin
e the emphasis here is on planar graphs, ea
h su
hinsertion 
reates a further fa
e in the graph. But the dual spanning tree of the LST is a SST ofthe image graph. The insertion of 
hords of non-in
reasing weight into the LST of the line graph
orresponds thus to the removal of non-in
reasing ar
s from the SST. For ea
h su
h operation,a fa
e is split in two in the line graph and the 
orresponding 
onne
ted 
omponent is divided intwo in its dual, the image graph. Hen
e, the modi�ed 
ontour 
losing algorithm 
orresponds inthe dual graph to the destru
tive algorithm for obtaining a SSkT from the SST, that is, it is theregion merging algorithm. Region merging and 
ontour 
losing are thus two algorithms whi
hsolve the same problem. It is a 
ase where the duality between region- and 
ontour-orientedsegmentation is an a
tual fa
t.The �rst attempt to formalize this interesting fa
t was made in [134℄, but the authors failed tore
ognize that ar
s should be inserted into the LST, thereby 
reating 
ir
uits, and not removed,whi
h is a pointless operation to perform on the LST of the line graph, even though the rightone in the SST of the image graph.It should be noti
ed, however, that globalization makes region merging and 
ontour 
losingdiverge, i.e., produ
e di�erent results, as will be dis
ussed later.
The problem of ties or plateaus
A few notes are in order regarding the problem of ties mentioned before. Knowing that thebasi
 algorithms 
an all be des
ribed in terms of SSTs, it should be 
lear that, when multipleequivalent solutions exist, this is related to the fa
t that there are usually no unique solutionsto the SSF, SSkT, SSSkT, or SSSSkT problems. However, two di�erent spanning k-trees ofan image graph 
an lead to the same partition, sin
e two regions are equal even if 
overed bydi�erent trees. The issue of multiple solutions, its relation with the multiple solutions of thespanning trees problems, and its relation with mathemati
al morphology (through watersheds),remained as an issue for future work.
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4.3.4 Globalization strategies
The basi
 versions of the region growing, region merging, and 
ontour 
losing algorithms allmake de
isions about when to merge or split two regions using lo
al information, namely the
olor di�eren
e between pairs of pixels. Information is globalized in those algorithms onlyinsofar as they dis
ard ar
s between pixels already at the same region of the evolving partition.Regions of 
onsiderable size 
an thus be merged, namely in the 
ase of region merging, justbe
ause they happen to have two adja
ent pixels whi
h are similar, even if the regions themselvesare quite di�erent globally. This is a problem of s
ale: as the size of the regions in
reases, thes
ale at whi
h their are 
onsidered should also in
rease. But it is also a problem of noiseimmunity: if whole regions are taken into a

ount, the noise tends to be \averaged out", thusrendering the algorithms more robust. There is thus the need to globalize the information overwhi
h de
isions are made. Another way of seeing this problem is to re
ognize that the use oflo
al information leads the algorithms away from the optimum segmentation.It is through globalization that the algorithms really tend to diverge and to gain new interestingproperties. In the previous se
tions it was shown that region merging and 
ontour 
losingwere really solving the same problem, they were, as a matter of fa
t, dual algorithms. It wasalso shown that region merging with seeds and region growing also solve the same problem.This only happens in the 
ase of the basi
 algorithms. When globalization is enfor
ed, byestablishing region and/or boundary models, for instan
e, the algorithms gain individuality.The next se
tions will overview the issues of modeling and globalization and dis
uss brie
ytheir in
uen
e on the basi
 algorithms.As the di�erent basi
 algorithms are globalized, they no longer solve the same problem, whi
hmight be to �nd a SSkT, a SSSkT, or a SSSSkT. However, they do attempt to a
hieve asegmentation whi
h is 
loser to the optimal segmentation. Hen
e, most of the globalizationmethods are a
tually heuristi
s towards solving the intra
table problem of optimal segmentation.
Region modeling
As de�ned, segmentation sear
hes for regions whi
h are uniform a

ording to 
ertain 
riteria.In the past, several su
h 
riteria have been used, su
h as 
onsidering a region uniform whenthe dynami
 range or the varian
e of its gray level is small, or when the maximum distan
ebetween 
olors in the region is also small. These are, in a sense, statisti
al 
riteria. Another,more interesting, 
lass of homogeneity 
riteria states that a region is uniform if the error be-tween the a
tual pixel values and a model for the region, with estimated parameters, is small.Segmentation into regions whi
h provide the best possible approximation to an image, using agiven region model, is a
tually the same as �tting a fa
et model to the images [68℄. In fa
etmodels, ea
h image 
omponent is thought to 
onsist of a pie
ewise 
ontinuous surfa
e, whi
h
an be 
onstant (the 
at fa
et model), linear or aÆne (sloped fa
et model), quadrati
, 
ubi
,et
. It is also possible to envisage the use of texture models, for instan
e.By far the most 
ommonly used model in segmentation is the 
at region model. Most of thealgorithms des
ribed in the literature (see next se
tions), use this simple model. It is the 
ase of
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the watershed and RSST algorithms, and it is also the 
ase of some of the algorithms proposedin this thesis.As to the error 
al
ulation, it is typi
al to use the root mean square error (related to theEu
lidean distan
e) as the value whi
h should be minimized, sin
e it both averages the erroralong the region and has ni
e algebrai
 properties: the estimates of parameters of linear modelsare obtained through statisti
s su
h as the mean and the varian
e. The maximum absoluteerror, on the other hand, worries too mu
h about the deviation of a single pixel, while the sumof absolute errors has algebrai
 properties whi
h are less amenable to eÆ
ient implementation,sin
e the estimated values are obtained through statisti
s su
h as the median, whi
h is harderto 
al
ulate than the mean value.As to the distan
e between 
olors, even though some authors [112℄ use the maximum absolute
omponent di�eren
e of the ve
torial di�eren
e between R0G0B0 or HSV 
olor spa
es andsome others suggest CIE L*a*b* and L*u*v* 
olor spa
es be
ause of their improved per
eptualuniformity [194℄, the most 
ommonly used metri
 is the Eu
lidean distan
e in the R0G0B0 spa
e,whi
h generally leads to reasonable results (see [164℄).The next se
tions derive the equations for the 
at and aÆne region models and show how theapproximation parameters for the union of two regions 
an be obtained from a redu
ed set ofstatisti
s for ea
h of the individual regions.
The 
at region model equationsLet R be a region in the domain of a digital image f . The 
at region model states that f̂ , theapproximation of f , is f̂ [v℄ = a 8v 2 R, i.e., the approximate image 
olor is 
onstant insidethat region. Let e(f; f̂ ;R) be the approximation error between f and f̂ inside R. Then

e(f; f̂ ;R) =sPv2R d2(f [v℄; a)#Rwith the distan
e
d(x; y) = kx� yk =q(x� y)T (x� y) =vuutn�1Xl=0 jxl � ylj2 (4.7)

where n is the number of 
olor 
omponents of the image.Di�erentiating the error relative to the 
olor ve
tor a, the minimum of the error is
e(f; ~f;R) =sB(f;R)�#R~aT ~a#R (4.8)

where B(f;R) =Pv2R f [v℄T f [v℄, and it is obtained for~f [v℄ = ~a = A(f;R)#R ;
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where A(f;R) =Pv2R f [v℄.Suppose now that two disjoint regions Rj and Rk are to be merged into a single region R, i.e.,R = Rj [Rk.Before merging, the image is approximated by

~f [v℄ = (~aj = A(f;Rj)#Rj if v 2 Rj , and~ak = A(f;Rk)#Rk if v 2 Rk;and the total approximation error before merging is
E =sPr�1l=0 #Rle2(f; ~f;Rl)Pr�1l=0 #Rlwhere r is the total number of regions.After merging, the total error is

E0 =s#Re2(f; ~f 0;R)�#Rje2(f; ~f;Rj)�#Rke2(f; ~f;Rk) +Pr�1l=0 #Rle2(f; ~f;Rl)Pr�1l=0 #Rland the image is approximated, inside R, by~f 0[v℄ = ~a = A(f;R)#R :
Sin
e A(f;R) = A(f;Rj) +A(f;Rk);B(f;R) = B(f;Rj) +B(f;Rk), and#R = #Rj +#Rk; (4.9)
the approximation of the image inside R 
an be written in terms of its approximation insideRj and Rk, i.e., ~a = A(f;Rj) + A(f;Rk)#Rj +#Rk = #Rj~aj +#Rk~ak#Rj +#RkThus, if the pair of regionsRj andRk to merge, usually restri
ted to being adja
ent, is supposedto minimize E0, it must be 
hosen so as to minimize the squared error 
ontribution to the totalerrorD(Rj;Rk) = Djk = #Re2(f; ~f 0;R)�#Rje2(f; ~f;Rj)�#Rke2(f; ~f;Rk). But, using (4.8)and (4.9) (
f. with Appendix B of [194℄),D(Rj ;Rk) = Djk =B(f;R)�#RaTa�B(f;Rj) + #RjaTj aj �B(f;Rk) + #RkaTk ak= #Rj#Rk#Rj +#Rk (~aj � ~ak)T (~aj � ~ak) = #Rj#Rk#Rj +#Rk d2(~aj ; ~ak): (4.10)
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It should be noti
ed that quantity Djk for a pair of (adja
ent) regions Rj and Rk does not
hange unless one of the two regions has been merged to another. Hen
e, if these quantitiesare stored for ea
h pair of adja
ent regions, the 
onsequen
es of merging two regions remainrelatively lo
alized.Finally, it should be noti
ed that, if the 
at region model is to be used during region-orientedsegmentation (either region growing or region merging), then the only quantities whi
h mustbe stored inside the data stru
ture representing the regions are #R, the number of its pixels,a, whi
h is the approximation parameter, and perhaps R, the set of region's pixels, in the formof a pixel list, for instan
e.
The aÆne region modelThe 
ase of the aÆne region model is simply a generalization of the 
at region model. In ea
hregion R the image is approximated byf̂ [v℄ = a+ bv 8v 2 R (4.11)where b is a n �m parameter matrix, n is the 
olor spa
e dimension, and m is the dimensionof the spa
e over whi
h the image is de�ned (2 for 2D images, 3 for 3D images). Hen
e, nowm+ 1 n-dimensional parameters have to be estimated.Let � stand for �a b�. Then, equation (4.11) 
an be written

f̂ [v℄ = � �1v� (4.12)
Again the obje
tive is to 
hoose � so as to minimize the approximation error

e(f; f̂ ;R) =sPv2R d2(f [v℄; f̂ [v℄)#Ror, given the de�nition of distan
e in (4.7),
e(f; f̂ ;R) =sPv2R(f [v℄� f̂ [v℄)T (f [v℄� f̂ [v℄)#R :

Sin
e f [v℄ and f̂ [v℄ are n-dimensional ve
tors for ea
h v, it is obvious that
e(f; f̂ ;R) =sPv2RPn�1l=0 (fl[v℄� f̂l[v℄)2#Rand, ex
hanging the summation order
e(f; f̂ ;R) =sPn�1l=0 Pv2R(fl[v℄� f̂l[v℄)2#R
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Let the sites v in region R be arranged in a sequen
e vk with k = 0; : : : ;#R� 1 (the order ofthe site ve
tors in the sequen
e is irrelevant). Then

e(f; f̂ ;R) =sPn�1l=0 P#R�1k=0 (fl[vk℄� f̂l[vk℄)2#R ;or
e(f; f̂ ;R) =sPn�1l=0 kfl � f̂lk2#R ;

where fl = �fl[v0℄ : : : fl[v#R�1℄�T and f̂l = �f̂l[v0℄ : : : f̂l[v#R�1℄�T . Using (4.12),
e(f; f̂ ;R) =sPn�1l=0 kfl � V (R)�Tl k2#R ;

where �l is the lth line of matrix �, and
V (R) = 2641 vT0... ...1 vT#R�1

375
Sin
e the term l of the summation depends only on �l, minimization of e(f; f̂ ;R) is equivalentto minimization of ea
h term of the summation. Minimizing ea
h of these terms is the same as�nding the least squares solution to the equationsV (R)�Tl = fl for l = 0; : : : ; n� 1. (4.13)
It is well known that [15℄:1. ea
h equation V (R)�Tl = fl has a least squares solution;2. there is a unique least squares solution to ea
h of these equations i� rank(V (R)) = m+1;and3. a ve
tor ~�l is a least squares solution to V (R)�Tl = fl i� ~�l is a solution to V T (R)V (R)~�Tl =V T (R)fl.Given that

V T (R)V (R) = 24 #R P#R�1k=0 vTkP#R�1k=0 vTk P#R�1k=0 vkvTk
35 = 24 #R Pv2R vTPv2R v Pv2R vvT

35
and

V T (R)fl = 24 P#R�1k=0 fl[vk℄P#R�1k=0 fl[vk℄vk
35 = 24 Pv2R fl[v℄Pv2R fl[v℄v

35 ;
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the least squares solution to the set of equation in (4.13) 
an be written~�K(R) = L(f;R); (4.14)where K(R) = V T (R)V (R) = � #R DT (R)D(R) E(R) � ;

L(f;R) = 264 fT0 V (R)...fTn�1V (R)
375 = �A(f;R) C(f;R)� ;

C(f;R) = Xv2R f [v℄vT ;D(R) = Xv2R v, andE(R) = Xv2R vvT :Equation (4.14) is guaranteed to have a solution. It is also a good 
andidate for input to anumeri
al routine, sin
e, unlike the previous equations, it has a �xed dimension. The solutionsare obviously equivalent, given the properties of the least squares problem, with the advantagethat least squares routines usually provide a solution even in the 
ase of underdetermination.By simple algebrai
 manipulation, it is straightforward to see that the minimum error is
e(f; ~f;R) =sB(f;R)�Pn�1l=0 ~�lK(R)~�Tl#R :

As in the 
ase of the the 
at region model, if two disjoint regions Rj and Rk are united into asingle region R, the following results hold triviallyK(R) = K(Rj) +K(Rk);L(f;R) = L(f;Rj) + L(f;Rk);C(f;R) = C(f;Rj) + C(f;Rk);D(R) = D(Rj) +D(Rk), andE(R) = E(Rj) + E(Rk); (4.15)from whi
h ~��K(Rj) +K(Rk)� = ~�jK(Rj) + ~�kK(Rk)Finally, the 
ontribution of this union to the squared error is
Djk = B(f;R)� n�1Xl=0 ~�lK(R)~�Tl �B(f;Rj) + n�1Xl=0 ~�jlK(Rj)~�Tjl �B(f;Rk) + n�1Xl=0 ~�klK(Rk)~�Tkl
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whi
h, using (4.9), 
an be redu
ed to

Djk = n�1Xl=0 ~�jlK(Rj)~�Tjl + ~�klK(Rk)~�Tkl � ~�lK(R)~�Tl (4.16)
Ea
h term of equation (4.16) represents the 
ontribution of ea
h 
olor 
omponent, and 
an befurther redu
ed whenever K(R) is non-singular.For the sake of brevity, let K = K(R), Kj = K(Rj), Kk = K(Rk), � = ~�l, L = Ll(f;R),Lj = Ll(f;Rj), Lk = Ll(f;Rk), �j = ~�jl , and �k = ~�kl , where Ll(f;R) is the lth line of L(f;R).Then�jKj�Tj + �kKk�Tk � �K�T=�jKK�1Kj�Tj + �kKK�1Kk�Tk � �KK�1K�T=�j(Kj +Kk)K�1Kj�Tj + �k(Kj +Kk)K�1Kk�Tk � LK�1LT=�jKjK�1Kj�Tj + �jKkK�1Kj�Tj + �kKjK�1Kk�Tk + �kKkK�1Kk�Tk� (Lj + Lk)K�1(LTj + LTk )=�jKjK�1Kj�Tj + �jKkK�1Kj�Tj + �kKjK�1Kk�Tk + �kKkK�1Kk�Tk� (�jKj + �kKk)K�1(Kj�Tj +Kk�Tk )=�jKjK�1Kj�Tj + �jKkK�1Kj�Tj + �kKjK�1Kk�Tk + �kKkK�1Kk�Tk� �jKjK�1Kj�Tj � �jKjK�1Kk�Tk � �kKkK�1Kj�Tj � �kKkK�1Kk�Tk=�jKkK�1Kj�Tj + �kKjK�1Kk�Tk � �jKjK�1Kk�Tk � �kKkK�1Kj�Tj=(�j � �k)KkK�1Kj�Tj + �kKjK�1Kk�Tk � �jKjK�1Kk�Tk=(�j � �k)KkK�1Kj(�j � �k)T
where use has been made of the fa
t that A(A+B)�1B = B(A+B)�1A.6Hen
e

D(Rj;Rk) = Djk = n�1Xl=0(~�jl � ~�kl)K(Rk)K�1(R)K(Rj)(~�jl � ~�kl)T (4.17)
whi
h has the same role for aÆne region models that equation (4.10) had for 
at region models.As in the 
ase of the 
at region model, quantity Djk for a pair of (adja
ent) regions Rj andRk does not 
hange unless one of the two regions has been merged to another. Hen
e, ifthese quantities are stored for ea
h pair of adja
ent regions (for ea
h ar
 in the RAG), the
onsequen
es of merging two regions remain relatively lo
alized.Also, if the aÆne region model is to be used during region-oriented segmentation (either regiongrowing or region merging), then the only quantities whi
h must be stored inside the data6Assuming thatA+B is non-singular A(A+B)�1B = (A+B)(A+B)�1B�B(A+B)�1B = B�B(A+B)�1B =B �B(A+ B)�1(A+ B) + B(A+B)�1A = B(A+ B)�1A.
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stru
ture representing the regions are K(R), �, and perhaps R, the set the region's pixels,in the form of a pixel list, for instan
e. Although not stri
tly ne
essary, L(f;R) may also bestored, at the expense of extra memory requirements, in order to in
rease pro
essing speed.Noti
e that K(R) plays the role of #R in the 
at region model: it depends only on the regionshape, and not on its 
olor, the 
olor information being 
on
entrated into the parameter �.Also noti
e that in this 
ase, instead of storing an integer (#R) and n 
oating points (n � 1ve
tor a), as in the 
ase of the 
at region model, (m + 1)2 integers (m + 1 � m + 1 matrixK(R)) and n(m+1) 
oating points (n�m+1 matrix �) have to be stored. Sin
e segmentationalgorithms have typi
ally heavy memory requirements, the use of the aÆne region model for allbut the smallest images is still not pra
ti
al on typi
al workstations.Two important questions must still be answered if this model is to be applied with su

ess in thefuture. What should be done if the least squares solution is not unique, i.e., if rank(V (R)) <m+ 1? And what is the meaning of su
h multiple solutions?
Conditions for uniquenessMultiple solutions o

ur when r = rank(V (R)) < m+1. Matrix V (R) is a #R�m+1 matrix,and thus its rank is always r � m+ 1 and r � #R. If #R < m+ 1, then r < m+ 1, and thereare multiple solutions to the least squares problem. In this 
ase the problem is simply that thereisn't enough data to 
ompute the approximation parameters. If #R � m+1 (or #R > m) butnevertheless r < m+ 1 (or r � m), then there must be exa
tly r linearly independent rows ofV (R).7 Without loss of generality, let the �rst r rows of V (R) be linearly independent. Then,all other rows must be linear 
ombinations of those r rows. That is,� 1vj� = r�1Xk=0�jk � 1vk� ;for some set of �jk with j = r; : : : ;#R and k = 0; : : : r � 1. Separating the �rst row of thematrix equation

1 = r�1Xk=0�jkvj = r�1Xk=0�jkvkor
�j0 = 1� r�1Xk=1�jkvj = (1� r�1Xk=1�jk)v0 + r�1Xk=1�jkvk7Noti
e that r � 1, sin
e V (R) by 
onstru
tion 
annot 
onsist solely of null rows and sin
e R is non-emptyby assumption.
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that is,

vj = v0 + r�1Xk=1�jk(vk � v0): (4.18)
But (4.18) is the equation of a point, if r = 1, of a line, if r = 2, of a plane, if r = 3, an soon. Hen
e, the least squares solution is not unique whenever the set of sites is \aligned" alonga hyperplane of dimension r� 1 < m. In the 
ase of 2D images, with m = 2, there are multiplesolutions if the sites in R are aligned along a line. In the 
ase of 3D images, with m = 3, thereare multiple solutions if the sites in R are aligned along a line or \aligned" along a plane.The 
ase of r = 1, where all sites 
oin
ide, 
an only o

ur if #R = 1, sin
e sets do not haverepeated elements. But sin
e #R > m by hypothesis, these 
ases are automati
ally ruled outin the 
ases of interest (m = 2 for 2D images and m = 3 for 3D images). These 
ases have been
lassi�ed above as 
ases without enough data.In 
on
lusion, in the 
ase of 2D (3D) images, there is a unique least squares solution if thereare three (four) non-
ollinear (non-
oplanar) sites in R.
Dealing with non-uniquenessIf there is no unique least squares solution, whi
h of the possible solutions should be 
hosen?How will it a�e
t segmentation, in the 
ase of region oriented segmentation? If the initial regionsare all one-pixel wide, it is 
lear that the error 
ontribution of all possible mergings will be thesame (viz. zero). But this is 
learly undesirable. The problem stems from using a powerfulmodel for modeling regions whi
h are too small (with only two pixels, resulting from mergingany pair of adja
ent one-pixel wide regions). This may be solved, in the 
ase of 2D images,by spe
ifying that a 
at region model should be used for one and two-pixel wide regions, theaÆne model being reserved for regions with more than two pixels. Even though this does noteliminate the all the sour
es of non-uniqueness (see the previous se
tion), it does eliminate those
ases where non-uniqueness is really a problem.Other solutions may also be used. If the image is split initially into 2 � 2 square regions,then there is always a unique solution to the least square problem. However, the segmentationresolution will 
learly su�er. An alternative solution, without this drawba
k, is to upsamplethe image by a fa
tor of two in both dire
tions before splitting into 2� 2 square regions. Thiswill, however, lead to in
reased memory requirements (by a fa
tor of at least 4).Stri
tly speaking, the above problem does not have to do with non-uniqueness. It is related withthe steepest des
ent approa
h to obtaining the optimal segmentation used by most segmentationalgorithms: at ea
h step 
hoose the regions to merge so as to minimize the error. However, thesein
remental minimizations are not guaranteed to 
onverge to a true global minimum. A
tually,they seldom do. The problem above is a
tually one of over adjustment of the model to the data,whi
h leeds to some bad de
isions by the segmentation algorithms. It seems that the model tobe used should always be insuÆ
ient to represent general data a

urately, if it is to have somemeaning. This, at least intuitively, is 
oherent with the knowledge that the \best" possible
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region model is the one whi
h spe
i�es independent values for the 
olors of all the pixels inthe image, whi
h 
an model without error the image segmented into a single region, but whi
h
onveys no useful information.
Boundary modeling
Boundary modeling 
an be useful both for region- and 
ontour-oriented segmentation, as willbe seen in the following. Noti
e that, even though the issue is 
ertainly important enough todeserve separate treatment in Se
tion 6.2, boundary shape (region shape), will not be dealt withhere. As in the 
ase of region modeling, the problem is to model the image around a boundary.Unlike region model, where a region 
onsists of a �nite, well known set of pixels, boundaries are
ontiguous sets of edges. Images do not have values at edges. Two approa
hes are possible forboundary modeling. The �rst, whi
h may be said to be the 
lassi
al one, is 
on
erned aboutthe derivatives of the image along a boundary. The se
ond attempts to model the image on amore or less narrow strip of pixels along a boundary.The 
lassi
al approa
h, whi
h estimates image derivatives, is typi
ally used in straightforwardextensions of the basi
 
ontour 
losing algorithm. What's more, the basi
 
ontour 
losingalgorithm 
an be though of as using the roughest possible estimate of the image gradient in thedire
tion orthogonal to the edge dire
tion: the di�eren
e of the pixel 
olors. Hen
e, the edgemodel, in this 
ase, is simply a horizontal fa
et whi
h passes through the two pixels separatedby the edge. Modeling in this 
ase is the pro
ess whi
h leads to estimation of derivatives, andthus is equivalent to the derivative 
omputation 
omponent of edge dete
tion operators. A
ompli
ated issue, whi
h has not been dealt with in this thesis, is establishing the meaning ofderivatives in the 
ase of non-s
alar 
olor models [36℄.The se
ond approa
h has been typi
ally used for image representation. Some arti
les, no-tably [58, 19, 37, 43℄, re
ognized that, sin
e the HVS is espe
ially sensitive to rapid 
olor tran-sitions, usually 
orresponding to physi
al edges, images may be represented by edges withoutloss of semanti
al information, in very mu
h the same way artists 
an e
onomi
ally represent as
ene with a few strokes. In [37℄, for instan
e, the image in a se
tion orthogonal to the dete
tededge is modeled as a step edge blurred by a Gaussian �lter. Hen
e, three parameters have tobe estimated at ea
h su
h se
tion: the mean point, the amplitude, and the sharpness of thetransition. In prati
e, a fourth parameter is also estimated: the extent to both sides of the edgeover whi
h the model is a good approximation. Noti
e, however, that in [37℄ this image modelis used to represent the image, not to segment it.
Globalization of region growing
Globalization is simple, in the 
ase of region growing. Instead of basing the pixel aggregationorder on pairwise pixel 
olor distan
es, the order is now based on how well the 
andidate pixels�t into the 
orresponding region model, whose parameters are estimated using the 
omplete setof pixels in the region at ea
h instant.
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For the 
at region model used on typi
al algorithms, the degree of �tness into a region may besimply the distan
e between the 
olor of the 
andidate pixel f [v℄ and the estimated parameter~a of the 
orresponding region R, i.e., d2(f [v℄; ~a), if the pixel is at site v. The squared distan
ewill be used in order to make the 
omparison between several globalization methods dire
t.It is immaterial to use the squared distan
e, sin
e the order relations are preserved by themonotonous fun
tion f(x) = x2 for x � 0.For the aÆne region model, the �tness may be 
al
ulated as the distan
e between the 
olorof the 
andidate pixel f [v℄ and ~� �1 vT �T , that is d2(f [v℄; ~� �1 vT �T ). In both 
ases, thedistan
e may be expressed more 
on
isely as d2(f [v℄; ~f [v℄), where ~f is an approximation tof over the union of the pixel and region in 
onsideration but whose parameters have beenestimated without 
onsidering that pixel's value, i.e., it is the (squared) distan
e between thepixel's 
olor and the 
olor obtained by extrapolating the region model to the pixel's lo
ation.Another possibility is to sele
t the pixel to aggregate as the one leading to the smallest in
reaseof the global approximation error, as given by equations (4.10) and (4.17), a

ording to themodel used. These equations, assuming that Rj 
orresponds to the 
andidate pixel at site v,i.e., Rj = fvg, and Rk 
orresponds to the region with whi
h it may be merged, i.e., Rk = R,simplify respe
tively toD(fvg;R) = #R1 + #Rd2(f [v℄; ~a)and
D(fvg;R) = n�1Xl=0��fl[v℄ 0�� ~�l�K(R)�K(R) + �1v� �1 vT ���1 �1v� �1 vT � ��fl[v℄ 0�� ~�l�T ;
where ~a and ~� are the estimated parameters for region R using the 
at and aÆne region modelsrespe
tively, and where ~�jl = �fl[v℄ 0�, for l = 0; : : : ; n � 1, is the simplest solution to (4.13)when Rj = fvg.Noti
e that d2(f [v℄; ~� �1 vT �T ) may be written as

d2�f [v℄; ~��1v�� = n�1Xl=0��fl[v℄ 0�� ~�l� �1v� �1 vT � ��fl[v℄ 0�� ~�l�T :
Hen
e, minimizing the in
rease in global approximation error tends to favor merging of pixelswith smaller regions, though in the 
ase of the aÆne region model the e�e
t of region size maybe 
ountered by e�e
ts of region shape.It should be noti
ed that, after ea
h pixel aggregation, the parameters of the region are adjustedto re
e
t the presen
e of that further pixel, but, even more important, the 
ontribution to theglobal error of all other pixels adja
ent to that region also 
hange as well. The 
onsequen
es ofthis fa
t are that:1. the ar
s whi
h are inserted into the tree do not in general form a SSSSkT of the imagegraph at the 
ompletion of the algorithm; however, sin
e at ea
h step the ar
s are 
hosen\the right way", this may be said to be a re
ursive SSSSkT algorithm; and
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2. the algorithm 
omplexity in
reases, sin
e several ar
s in the priority queue have theirweight updated after ea
h step, whi
h requires reorganization of the queue.Noti
e that the appli
able algorithms are adjustments of 
onstru
tive SSSSkT algorithms. Thedestru
tive algorithms 
annot be 
hanged in any simple way to a
hieve the same result. Also,even though the 
omplexity of the 
onstru
tive algorithm in
reases, hierar
hi
al queues stillseem to be the best possible stru
tures to use. Both these issues have been left for future work.

WatershedsIn order to avoid the in
reased algorithm 
omplexity whi
h results from re
al
ulating weightsof ar
s already in the priority queue, [177℄ proposed to reestimate the region model parametersafter pixel aggregation but to leave un
hanged the weight of pixels already in the priority queue(this problem is not a
knowledged in [177℄). This means that, at ea
h moment, the ar
s inthe queue have weights 
orresponding to region model parameters estimated at di�erent timeinstants. The 
onsequen
es of this fa
t, however, do not seem to be tragi
, sin
e for regions ofreasonable size the parameters do not 
hange mu
h after ea
h pixel aggregation.This algorithm is essentially the one used in Sesame [30℄, the segmentation-based 
andidate forVeri�
ation Model during the development of MPEG-4. The region model used in Sesame isstill the 
at region model. However, a hierar
hy of segmentation results is produ
ed by en
od-ing the results of segmentation, using a more powerful region model, and resegmenting within
reased detail those parts of the image where the approximation error is larger. The meritsof this idea are threefold: it allows for s
alability in a quite elegant way, it takes quantizatione�e
ts into a

ount during the segmentation pro
ess (not during ea
h of the runs of the seg-mentation algorithm, but during the 
al
ulation of the segmentation hierar
hy), and it leads toa

eptable 
omputational 
omplexity. As 
omputer power in
reases, however, the justi�
ationfor not integrating more 
omplex region models (and maybe quantization e�e
ts), during thesegmentation algorithm tends to vanish.
Globalization of region mergingAs in the 
ase of region growing, region merging has been typi
ally performed in two ways:either by 
omparing the region model parameters using some kind of metri
, or by using the
ontribution of the merging to the global error. In both 
ases, in parallel with the regiongrowing 
ase, the 
onstru
tive algorithms 
hange, sin
e there is the need to update the weight(priority) of several ar
s in the queue whenever two regions are merged. The solved problemthus 
eases to be the SSkT problem, though at ea
h step of the algorithm the \right" ar
 is
hosen. Hen
e, these algorithms have both been labelled by [134℄ and [194℄, who �rst proposedthem, re
ursive SST algorithms, or RSST. Sin
e the weights of the ar
s not dire
tly involved ina merging operation 
an 
hange, it is not guaranteed that the ar
s of the resulting spanning tree(the re
ursive one), are inserted in in
reasing order of weight. Hen
e, even though destru
tivealgorithms 
an be applied afterwards, their meaning is less than 
lear.Noti
e that the �rst type of globalization, whi
h uses dire
t 
omparison of region model param-
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#Rj #Rk #Rj#Rk#Rj+#Rk1 1 0.51 100 0.99100 100 50

Table 4.1: The #Rj#Rk#Rj+#Rk fa
tor for some region sizes.
eters, is well de�ned only for simple models, su
h as the 
at region model, whi
h 
orrespondsto 
al
ulating the distan
e between the average 
olors of the two region 
andidate to a merging.In the 
ase of more 
ompli
ated models, appropriate metri
s may be hard to �nd. But, sin
ethis globalization method has an inherently worst behavior than the se
ond one, as will be seenin the sequel, the sear
h for su
h metri
s seems to be a worthless task.The advantage of the se
ond type of globalization, namely the one using the 
ontribution to theglobal approximation error, stems from the inherent good treatment of small regions. Considerfor a moment the 
at region model. In the �rst 
ase, the weight attributed to the union of tworegions Rj and Rk is simply the (squared) distan
e between their average 
olors d2(~aj ; ~ak). Inthe se
ond 
ase, it is the 
ontribution to the global approximation error, i.e., #Rj#Rk#Rj+#Rk d2(~aj ; ~ak).The fa
tor #Rj#Rk#Rj+#Rk a

ounts for the di�erent treatment of small regions, sin
e it is smallwhenever either (or both) of the regions are small (see Table 4.1 for three examples). Hen
e,small regions tend to grow faster than large regions, and the likelihood of small regions hangingaround is redu
ed. Su
h small regions 
an really be a plague if the �rst type of globalization isused. Most of them derive from the unfortunate fa
t that, when using 4-neighborhoods, thinlines with about 45 degrees of slope produ
e a series of dis
onne
ted regions of a singe pixel.This e�e
t will be shown in Se
tion 4.5, whi
h proposes an alternative way for dealing with thisproblem.If the aÆne region model is used, the same 
omments apply, even if in this 
ase the 
omparisonis hampered by the in
uen
e of region shape in the 
ontribution to the global approximationerror (4.17) and by the absen
e of meaningful metri
s for dire
t parameter 
omparison. However,a straightforward metri
 
orresponding toPn�1l=0 (~�jl�~�kl)(~�jl�~�kl)T may be used for 
omparisonpurposes.It should be stated here that, even though globalization of information allows the segmentationto get 
loser to the optimum, it 
an be shown easily, by a 
ounter example, that the algorithmis not guaranteed to attain the optimum. In the following example, a grey-s
ale (s
alar 
olor)1� 4 image is segmented into two regions by globalized region merging using the 
ontributionto the global error and the 
at region model (regions numbered from 0 at the left):

(a) 1 2.1 2.9 4(b) 1 2.5 4(
) 2 4(d) 1.55 3.45
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In the original original image (a), the 
ontributions to the global error are D01 = 0:605, D12 =0:32, and D23 = 0:605. In (b) the 
enter regions, whi
h 
ontribute less to the global error,have been merged, resulting in D01 = 1:5 and D12 = 1:5. Finally, in (
) the two �rst regionshave been merged (in this 
ase the 
hoi
e is irrelevant), leading to segmentation with a globalapproximation error of E = p0:455. This segmentation is worst than the optimum segmentationin (d), whi
h has a global approximation error of E = p0:3025.In a sense, the globalized segmentation algorithms work like steepest des
ent optimization, whi
hare known to lead to lo
al optima but in general not to global optima. Reviews of methodswhi
h attempt to solve this problem, at the expense of in
reased 
omputational 
omplexity, 
anbe found in [104, 147℄.
Region merging with seedsGlobalization 
an be applied in mu
h the same way to region merging with seeds. While thenon-globalized, basi
 region growing and seeded region merging algorithms lead to equivalentresults, in the sense that both solve the SSSSkT, their globalizations have di�erent properties.Firstly, it should be noti
ed that, unlike the 
ase of region growing, now arbitrary regions 
anbe merged, unless both 
ontain pixels of di�erent seeds, whi
h results in a faster globalization ofinformation, espe
ially in the 
ase of using the 
ontribution to the global approximation error asar
 weights, sin
e, as seen in the last se
tion, it tends to favor mergings of the smaller regions.One of the pra
ti
al results of this fa
t is that pixels of a seedless but uniform zone of the imagetend to be aggregated into a single region, whi
h at a later time will be merged to some seededregion. Su
h seedless uniform zones are often split between two or more di�erent neighboringseeds in the 
ase of region growing, espe
ially in the 
ase of watershed segmentation, whi
h wasbuilt so as to expli
itly divide those zones, plateaus, among various basins. But the division ofthese zones typi
ally 
orresponds to splitting part of an obje
t, whi
h is undesirable in the 
aseof image analysis, whi
h aims at identifying whole obje
ts.Another advantage of globalized region merging with seeds already existed in the basi
 algo-rithm: the intermediate segmentation results are meaningful. This means that the algorithmmay be stopped immediately if, for instan
e, the global approximation error ex
eeds a threshold,thereby produ
ing a meaningful partition of the image whi
h in
ludes some seedless regions,whi
h were deemed unmergeable to neighboring seeded regions. This ni
e behavior of regionmerging with seeds is the reason why it was 
hosen as a good tool for supervised segmentation.
Globalization of 
ontour 
losingGlobalization of 
ontour 
losing is not easy. Sin
e the ar
s are sele
ted not for merging butfor splitting regions, it is not 
lear what data should be used to estimate the boundary modelparameters. That is why su
h models are estimated in a somewhat arbitrary neighborhood ofedges. Su
h is the 
ase of Sobel and related estimators of the image derivatives.Boundary information may be used to improve the results of region-oriented segmentation [194,
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158℄. The rationale for su
h methods stems from the fa
t that segmentation often leads toboundaries in zones where there are really no strong transitions in the image. However, thereason for these false 
ontours, as they are 
alled, is the failure of models to represent faithfullythe 
olor of real regions. This is obviously the 
ase if the 
at region model is used to segment auniformly sloped region, whi
h would be perfe
tly represented by the aÆne region model. It isarguable that the best solution to the false 
ontours problem would be to devise better regionmodels, but in pra
ti
e this is often a hard task, fundamentally be
ause of the added algorithm
omplexity. Besides, in order to produ
e meaningful segmentations, the region models 
annotbe so 
omplex as to represent every possible image: segmentation is well de�ned only if theregion models are not too powerful, and hen
e false 
ontours must be dealt with using otherte
hniques, su
h as the ones in [194, 158℄.
Shape restri
tionsBoundary information may also be used to restri
t region-oriented segmentation so as to produ
epartitions where the boundaries do not exhibit too mu
h busyness. The reasons for this derivefrom the fa
t that everyday obje
ts often have regular boundaries,8 and, more importantly, fromthe fa
t that, if the partition is to be en
oded, boundary busyness 
an lead to very expensiverepresentations. Instead of for
ing the en
oder to use lossy te
hniques, and thus to introdu
eboundary simpli�
ations in a blind way, if image analysis and 
oding are more 
losely integrated,segmentation algorithms 
an attempt to redu
e boundary busyness themselves, thus a
hievinga result whi
h is hopefully equivalent in terms of savings at the en
oder. This idea has beensuggested in [30℄, where in
reases in boundary 
omplexity, whi
h result from adding a pixel toa region, are used together with 
olor di�eren
es to de
ide whi
h pixel to merge next in thewatershed segmentation algorithm.
4.3.5 Algorithms and the dual graphsAll the globalized algorithms, with the ex
eption of globalized 
ontour 
losing and of region-oriented algorithms making use of boundary information, require only information about theadja
en
y of regions. A RAG in whi
h ea
h region 
ontains a list of its pixels is suÆ
ientlypowerful to represent the partition at ea
h step of the algorithm. However, when boundaryinformation must be taken into a

ount, it is often of interest to distribute that informationthrough the pie
es of border that 
onstitute ea
h boundary. Also, sin
e partitions will oftenneed to be en
oded, and some of the partition en
oding s
hemes make use of 
ontour topology,it may be important to use the dual RAMG and RBPG graphs while performing segmentation.This, of 
ourse, assuming 2D partitions are the aim.For all 
onstru
tive segmentation algorithms, it is possible to keep a pair of dual region (RAMG)and 
ontour (RBPG) graphs, that is, a map, representing the 
urrent partition. All that hasto be done is to perform region merging as indi
ated in Se
tion 3.5.1 as regions are merged,starting with the trivial graph in whi
h ea
h pixel is a region.8However, some boundaries in natural s
enes 
an have a fra
tal nature.
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The data stru
ture implementing the pair of dual graphs representing the map, in this 
ase anevolving partition, may store information about borders, in ea
h region, in a hierar
hi
al way. Itmay be useful to a

ess borders one by one, or bun
hed together in super-borders 
onsisting ofall the borders between given pairs of adja
ent regions. Su
h super-borders 
orrespond obviouslyto ar
s of the underlying RAG.In order to save memory and to speed up a

ess to the borders of a region or to the regionsseparated by a border, the data stru
ture 
an also make use of the fa
t that ar
s are sharedamong two dual graphs. Several data may be stored in region nodes, and in border ar
s, andeven in super-borders. Regions nodes typi
ally store the region size (measured by the numberof pixels, whi
h is an area for 2D partitions and a volume for 3D partitions), the set of pixels inthe region, a set of statisti
s of these pixels, and parameters of a model adapted to the valuesof the image at the region pixels. Borders typi
ally store the border size (a perimeter measuredin number of edges, in the 
ase of 2D partitions, and a surfa
e area measured in number offa
es, in the 
ase of a 3D partition),9 a deque (double-ended queue) of their edges, whi
h maybe useful for tra
ing the border later on, statisti
s of the transitions in image 
olor along theborder, and parameters of a boundary model adapted to the values of the image around theborder. Finally, super-borders typi
ally store a weight whi
h has to do with the homogeneityof the region resulting from removal of the 
orresponding borders. This weight may ponderalso the 
hara
teristi
s of the 
orresponding borders, in the 
ase of region-oriented algorithmsmaking use of boundary information.
4.3.6 Con
lusionsThis se
tion presented a stru
tured overview of various segmentation algorithms, whose basi
versions are related to SST problems, and whose globalization, while making their propertiesdiverge, hopefully leads to algorithms whi
h are 
loser to the optimum in some sense.Using the 
lassi�
ation in Se
tion 4.2, the presented algorithms are, stri
tly speaking, segmen-tation te
hniques, whi
h may or may not be in
luded into segmentation algorithms. They areregion-oriented (with the ex
eption of 
ontour 
losing), generi
, memoryless (ex
ept in the 
aseof 3D), and either ve
torial or s
alar.
4.4 A new knowledge-based segmentation algorithm
After ITU-T10 issued H.261, aiming at bitrates p�64 kbit/s with p = 1; : : : ; 32, when ISO/IEChad already issued MPEG-1, for up to about 1:5 Mbit/s, and work on MPEG-2 was being�nalized, the need for very low bitrate 
oding te
hniques and standards began to be felt. Themain appli
ation behind the expe
ted need for su
h very low bitrate te
hniques was the mobiletelephony. Eventually, the resear
h in this area gave birth to a new standard, H.263, and9Maps have not been de�ned for 3D partitions, so stri
tly speaking the surfa
e would be stored only insuper-borders of a RAG.10Then CCITT (Comit�e Consultatif Internationale de T�el�egraphique et T�el�ephonique).
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sparked work on MPEG-4, whi
h was later revamped to be mu
h more than a standard for verylow bitrate video 
oding, as seen in Chapter 2.Two parallel paths were taken towards the development of very low bitrate video 
oding te
h-niques. One tried to make many small improvements to the existing te
hniques, basi
ally motion
ompensated hybrid 
oding, and another attempted to rea
h a breakthrough in 
ompression byusing te
hniques whi
h, being related or based on mid-level vision 
on
epts, may be termedse
ond-generation. The �rst path was quite su

essful at squeezing more 
ompression out of oldte
hniques: H.263 substantially outperformed H.261 at low bitrates and even above. For these
ond path, however, there did not seem to exist mature enough te
hnology. E�e
tive anal-ysis te
hniques were required but unavailable. Without su
h analysis te
hniques, how 
ould astandard be developed for very low bitrate appli
ations on a tight agenda? Besides, in terms of
ompression, though the resear
h investment seems 
learly worthwhile, the results attained didnot seem too good: in the framework of MPEG-4, 
ore experiments demonstrated either thesuperiority of the mature motion 
ompensated hybrid 
oding te
hnology, or that improvementsusing other te
hniques were not very signi�
ant.The solution to this dilemma was found by re
ognizing the growing importan
e of the intera
tionwith the visual s
ene. Mid-level vision 
on
epts, su
h as the obje
t, might still be useful, if notfor 
ompression at least for manipulation, or for added fun
tionalities. The obje
t thus be
amethe 
enter of MPEG-4. Easy a

ess to 
ontent as one of the obje
tives of en
oding was nolonger frame- or image-based, but be
ame obje
t-based. Granted, full-proof automati
 se
ond-generation analysis te
hniques were, and still are, but a wish, but MPEG-4 will not standardizeanalysis, just syntax and de
oding. Hen
e, it will be ready by the time those te
hniques �nallyarrive. Expertise will grow meanwhile, through the use of supervised analysis te
hniques, andMPEG-4 will still be usable, e.g. if obje
ts are segmented using 
lassi
al TV te
hniques su
has 
hroma-keying.In between the two stated paths, a few other paths were also taken towards very low bitrate
oding and ultimately obje
t-based 
ontent a

ess. One of them was the improving of existing
ode
s through slow integration of se
ond-generation te
hniques. The knowledge-based segmen-tation proposed in this se
tion, and global motion estimation, 
an
ellation and 
ompensation,as des
ribed in Se
tions 5.5 and 6.1, 
an be seen as the result of this e�ort, and thus 
learlybelong to the so-
alled transition towards se
ond-generation video 
oding tools.
4.4.1 Introdu
tionKnowledge-based video 
oding algorithms 
an be applied to advantage in the path towardsse
ond-generation video 
oding and very low bitrate video 
oding. The main idea behind it isthat the observer of a videotelephone sequen
e, typi
ally a head and shoulders s
ene, is parti
-ularly sensitive to the image quality in areas su
h as the speaker's eyes and mouth, less to thequality in the speaker's body, and even less to the quality in the ba
kground. Knowledge-basedvideo 
oding algorithms attempt to distribute the available bits so that quality is 
on
entratedwhere it is really needed. This s
heme, while keeping or even lowering the global obje
tive qual-ity measures (e.g., PSNR), improves the subje
tive quality of the en
oded sequen
e. What'smore, it 
an be easily integrated in existing �rst-generation en
oders (e.g., H.261 
ompati-
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ble [62℄) while maintaining full 
ompatibility with existing de
oders.Segmentation is a fundamental step in knowledge-based video 
oding algorithms. Again usingPavlidis' words [156℄ \segmentation identi�es areas of an image that appear uniform to anobserver, and subdivides the image into regions of uniform appearan
e." As said before, theuniformity 
riterion 
an be 
hosen in many di�erent ways. One may, for instan
e, envisage atype of segmentation where one desires to identify 
ertain obje
ts known to be in an imageor image sequen
e. This is knowledge-based segmentation. This se
tion presents a knowledge-based segmentation algorithm for videotelephony whi
h 
an 
ope with a wide range of sequen
es,studio based or mobile.The obje
tive is the segmentation of ea
h image in a videotelephone sequen
e into three regions:head, body and ba
kground, ea
h having di�erent subje
tive quality impa
t upon the observer.However, as a �rst approa
h, admitting that the head/body separation 
an be based solelyon geometri
al reasoning, the obje
tive 
an be redu
ed to the segmentation into two regions:speaker and ba
kground. This segmentation falls somewhere between the two de�nitions givenbefore:
� a spe
i�
 \known" obje
t should be identi�ed (the speaker);� the obje
t appearan
e is only know to a 
ertain extent (must 
ope with any humanspeaker); and� the position of the obje
t is known a priori with a high probability (
entered, fa
ing
amera, neither too 
lose nor too far).

In spite of the fa
t that the segmentation of the typi
al videotelephone sequen
es (e.g., \Claire",\Trevor", \Salesman" and \Miss Ameri
a") is relatively easy, see for instan
e [99, 160℄, the ex-pe
ted emergen
e of mobile/hand-held videotelephone servi
es demand mu
h more robust seg-mentation algorithms. Plompen [163℄, for instan
e, des
ribes a simple method for segmentation.The rationale behind it is that, in studio or �xed 
amera videotelephone sequen
es, the signi�-
antly 
hanged blo
ks (e.g., in terms of the mean absolute di�eren
e) will very likely be lo
atedonly over the moving speaker. The 
omplete segmentation is then obtained through a splitand merge algorithm [55℄. For the head/body segmentation simple geometri
 
onsiderationsare used, as in the method proposed below. However, this method is not appropriate for use inmobile sequen
es, where the whole ba
kground is potentially moving. See also [123, 125, 126℄for preliminary versions of the algorithm.Typi
al mobile sequen
es (e.g., \Foreman" and \Carphone") 
ontain a lot of ba
kground move-ment (originated by hand-held 
amera movement in \Foreman", and by 
amera vibration andthe passing lands
ape in \Carphone"), making it diÆ
ult for te
hniques using simple di�eren
eoperators to produ
e a

eptable results. These sequen
es also usually 
ontain a highly detailedba
kground, 
ompli
ating the task of edge dete
tion based segmentation algorithms.The algorithm presented here, whi
h is an evolution of the knowledge-based algorithms proposedby [160℄ and by [166℄, divides ea
h image into three distin
t areas, head, body and ba
kground,at the H.261 MB resolution (i.e., 16 � 16 pixels). The robustness of the algorithm stems fromits attempt to dynami
ally 
lassify the input sequen
e into one of four 
lasses, a

ording to
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the uniformity of the ba
kground and to the presen
e of ba
kground/
amera motion. Ea
hvideotelephone sequen
e is dealt with using the segmentation te
hniques appropriate for thedete
ted 
lass. The robustness of the proposed algorithm has been la
king in the knowledge-based segmentation algorithms available [99, 163, 160℄, whi
h 
ould only handle sequen
es with�xed, or even uniform, ba
kgrounds.The ne
essary segmentation resolution depends on the video en
oder to be used. For instan
e, ifthe 
ode
 is 
ompliant with H.261 and the quantization step is used to 
ontrol the quality of thedi�erent segmented regions, then a segmentation at a MB resolution, as proposed here, suÆ
es.It should be noti
ed here that the algorithm was developed for CIF (Common IntermediateFormat) images. However, the algorithm is appli
able, with adaptations, for other image sizesand at other resolutions.Two basi
 pixel level operators, namely Sobel and image di�eren
e, are used to 
onstru
t ana
tivity map for the 
urrent image, whi
h is subsequently de
imated to MB resolution. Theremaining steps of the algorithm operate at this lower resolution, whi
h has the advantage thatmu
h of the pro
essing deals with \images" of a mu
h smaller size (with 256 times less elementsthan the original input images), resulting in a redu
ed 
omputational weight.The MB level pro
essing in
ludes the appli
ation of inertia to the results of segmentation, thustaking into a

ount the high probability of small 
hanges of the speaker position from imageto image in a typi
al videotelephone sequen
e. It also in
ludes knowledge-based geometri
te
hniques whi
h 
orre
t the shape of the obtained segmentation, and a �nal knowledge-basedgeometri
al 
oheren
e quality estimation step whose result is used to adapt the algorithm pa-rameters. The quality 
ontrol is delayed, as the 
hanges in the parameters take e�e
t only forthe next image in the sequen
e. The estimated quality is used as well for de
iding whether toa

ept or reje
t the 
urrent segmentation.
4.4.2 Algorithm des
ription
This se
tion des
ribes the main steps of the algorithm proposed. This algorithm 
an be 
lassi�edas:
� MB (16� 16 pixels) resolution, sin
e the result of the segmentation has MB resolution;� with memory, sin
e it uses information about the previous images (by using the imagedi�eren
e operator, by using inertia of segmentation, and by using the memory me
hanism,all explained in the following se
tions);� knowledge-based, sin
e it uses the a priori knowledge that the images represent typi
alhead-and-shoulders videotelephone s
enes;� with knowledge-based, geometri
al 
oheren
e quality estimation;� with quality estimation for quality 
ontrol and segmentation a

eptan
e/reje
tion; and
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� with delayed quality 
ontrol, sin
e the segmentation algorithm parameters are adjusteda

ording to the 
urrent quality estimate but this adjustment is e�e
tive only in the nextimage.

A 
ow 
hart of the algorithm is presented in Figure 4.5.
Edge dete
tion operators
Transition strength operators
At the low-level, the algorithm uses two di�erent transition strength operators. The �rst isthe Sobel transition strength operator, where the magnitude of the gradient, in order to redu
e
omputational e�ort, is approximated here by the sum of the absolute values of the partialderivatives [56℄: krf [i; j℄k � Sobel(f [i; j℄) = G[i; j℄ = jfx[i; j℄j+ jfy[i; j℄jwhere fx and fy are given by (4.1) and (4.2). It 
an be 
lassi�ed as a transition strength, s
alar,2D operator.The se
ond operator is the image di�eren
e des
ribed in equation (4.6). It 
an be 
lassi�ed asa s
alar, 3D, transition strength operator, sin
e, when movements from one image to the nextare small, the image di�eren
e operator produ
es an approximation to the derivative in thedire
tion of the motion.
Edge lo
alization methods
The results of the low-level transition strength Sobel and image di�eren
e operators are thenused for lo
ating edges in the images. Sin
e, as will be seen later, the results of this lo
alizationwill be understood more as a
tivity measures than as dete
ted edges, the edge lo
alizationmethods used are very simple:
Sobel operatorA pixel p = [i; j℄ is 
onsidered to be dete
ted (i.e., to belong to an edge) if the 
orrespond-ing transition strength G[p℄ is above a given threshold (see below) and if there is at leastone pixel q 2 N8(p) (in the 8-neighborhood of p) su
h that 0:9G[p℄ � G[q℄ � 1:1G[p℄. Thelast 
ondition is used to redu
e isolated dete
ted pixels due to noise.Image di�eren
e operatorA pixel p = [i; j℄ is 
onsidered to be dete
ted (i.e., to belong to a 
hanged area) simplyif the 
orresponding value of the image di�eren
e operator Dn[p℄ = Di�(fn[p℄; fn�1[p℄) isabove a given threshold (see below).
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Figure 4.5: Segmentation algorithm 
ow 
hart. When blo
ks are identi�ed with 
lass numbers,they perform di�erently a

ording to the 
lass of the input sequen
e.
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Knowledge-based thresholdingThe results of the low-level edge dete
tion operators, obtained by estimating transition strengthand then lo
alizing the edges, are afterwards used to measure the a
tivity of ea
h pixel, whi
hwill in turn be 
onverted from pixel to MB (16� 16 pixels) resolution.Sin
e the sequen
es are assumed to 
onsist of a speaker reasonably 
entered within ea
h image(this is knowledge-based segmentation), the a
tivity measurements should be reinfor
ed at thosepla
es where the speaker is more likely to be found in the image. This is done by using variablethresholding during edge lo
alization. The thresholds vary along the image as indi
ated inFigure 4.6.

Figure 4.6: Variable threshold patterns 
onsist of a 
entral plateau of 
onstant, low threshold,whi
h grows linearly towards the top 
orners of the image.Two variable threshold patterns are used: the �rst for the Sobel operator (with plateau level20 and top 
orners level 64), and the se
ond for the image di�eren
e (with plateau level 10 andtop 
orners level 40). In the 
ase of 
lass 4 image sequen
es, however, the threshold patternindi
ated for the image di�eren
e is valid only for an image rate of 25 Hz (sequen
e 
lasses willbe de�ned later). For other image rates the thresholds are adjusted linearly with the inverse ofthe image rate. For instan
e, at 5 Hz the plateau level is 30 and the top 
orners level is 90. Thisadjustment is ne
essary in order to avoid dete
ting too mu
h a
tivity on a moving ba
kground,sin
e the range of the movements tends to in
rease with an in
reased time between su

essiveimages.
Filtering the a
tivity measurementsBefore the resolution 
onversion takes pla
e, the a
tivity at ea
h pixel must be 
omputed.Though the exa
t method depends on the dete
ted 
lass of the 
urrent image, two �lteringoperators may be used: purge and �ll. Both operate on a binary image, e.g., obtained afteredge lo
alizing the results of Sobel or image di�eren
e:
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Purge operatorThe purpose of this operator is to eliminate isolated dete
ted pixels. All dete
ted pixelswith less than two dete
ted 8-neighbors are 
leared. Dete
ted pixels with two dete
ted8-neighbors are 
leared only if not both neighbors are m-
onne
ted. The last 
onditionavoids the 
learing of pixels belonging to a 
ontinuous edge.Fill operatorThis operator sets as dete
ted all undete
ted pixels whi
h have more than two dete
ted8-neighbors.
Sometimes the binary results of the des
ribed operators are \ored" together. A \ored" pixel isdete
ted if at least one of the 
orresponding pixels of the two operands being \ored" is dete
ted.
Sequen
e 
lassesOf paramount importan
e for the development of the knowledge-based segmentation te
hniqueproposed is the 
lassi�
ation of the input videotelephony image sequen
es into 
lasses. Ea
hof the 
onsidered 
lasses, by its own nature, requires di�erent pro
essing. Videotelephonesequen
es 
an be 
lassi�ed a

ording to:1. the uniformity, in terms of texture or 
omplexity, of the ba
kground; and to2. the existen
e of movement in the ba
kground, whi
h may be due to movement of the
amera, to movement of the ba
kground, to movement of obje
ts seen in the ba
kgroundor to any 
ombination of the three.
Classes 1 and 3Sequen
es having a uniform ba
kground (it is impossible to distinguish whether the ba
k-ground is �xed, 
lass 1, or has any movement, 
lass 3) su
h as \Claire" and \Miss Amer-i
a", whi
h are typi
al studio sequen
es.Class 2Sequen
es having non-uniform but �xed ba
kground, for instan
e, \Trevor" and \Sales-man", whi
h are typi
al in-house videotelephony sequen
es.Class 4Sequen
es having movement in a non-uniform ba
kground, for example, \Carphone",whi
h has movement in the ba
kground due to 
amera vibration and due to the pass-ing lands
ape seen through the windows, and \Foreman", whi
h has movement in theba
kground due only to movements of the hand-held 
amera.
Segmentation of these 
lasses of sequen
es has various degrees of diÆ
ulty, and for ea
h onethere are preferred segmentation te
hniques:
� Sequen
es of 
lasses 1 and 3 
an be segmented using both 2D and 3D segmentationte
hniques [99, 160℄.
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� Sequen
es of 
lass 2 pose more problems to 2D te
hniques be
ause of the non-uniformba
kground. It is not simple to distinguish the speaker from the 
omplex ba
kground.However, if the speaker is moving, and she usually is, 3D te
hniques may be used to obtaina �rst approximation to the speaker's position [99, 160℄. This information may then beused to restri
t the sear
h area for 2D te
hniques [99℄.� Sequen
es of 
lass 4 are more diÆ
ult to segment. For these (typi
ally mobile) sequen
esspe
ial methods must be devised. The main 
ontribution of the proposed algorithm is itsability to 
ope reasonably with sequen
es of this 
lass.

Ea
h 
lass is segmented here using di�erent low-level operators. For instan
e, sequen
es of
lasses 1 and 3 
an be pro
essed using only 2D operators, whi
h have a very small responsein the uniform ba
kground, or a 
ombination of 2D and 3D operators, while 
lass 2 sequen
esare better dealt with using only 3D operators, as they do not respond to a �xed ba
kground,however stru
tured it may be.It is very important for the algorithm to be able to dete
t the 
lass of the input sequen
eautomati
ally. Note that 
lass dete
tion is applied to ea
h image in a sequen
e and thus the
lass of a sequen
e may 
hange over time, as will be explained in the next se
tion.
Class dete
tionClass dete
tion is implemented in a very simple way in this algorithm. First, the two transitionstrength operators used in the algorithm, Sobel and image di�eren
e, are applied to the 
urrentimage. Ea
h result is then passed through the 
orresponding edge lo
alization pro
ess, whi
hinvolves the use of a variable threshold. Noti
e that, for 
lass dete
tion purposes, the use of avariable threshold is not ne
essary. However, sin
e the results of thresholding Sobel and imagedi�eren
e are used in the steps of the algorithm following 
lass dete
tion, the 
omputationale�ort is thus redu
ed. The results are �nally analyzed in three zones, shown if Figure 4.7, inwhi
h the probability of �nding some part of the speaker's head or body is low.If the a
tivity, measured as the per
entage of dete
ted pixels of the edge lo
alized Sobel operator,is above 2% in any of the three zones, the sequen
e is assumed to have a non-uniform, stru
turedba
kground. Similarly, if the a
tivity of the edge lo
alized image di�eren
e operator is above0:2% in any of the mentioned zones, the sequen
e is 
onsidered to have motion in the ba
kground.Three dete
tion zones of 
omparable size are used instead of a single one sin
e a very lo
alizedmovement or stru
ture may be easily missed when a single large zone is used, and using a smallerthreshold might lead to erroneously dete
tion of apparent ba
kground motion or stru
ture
aused by noise.This type of dete
tion leads to good results for typi
al videotelephone sequen
es. It may howeverfail in images where the speaker moves into one of the analyzed zones. When this happens,some images of a 
lass 1, 2, or 3 sequen
e 
an be mistakenly dete
ted as belonging to 
lass 4.However, sin
e the te
hniques used for the segmentation of 
lass 4 sequen
es are more robustthan for any of the other 
lasses, this will very likely 
ause little problem.
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1 2

3 3

Figure 4.7: Class dete
tion zones in a CIF image (divided into a MB spa
ed grid).
A 
ommon problem that o

urs with 
lass dete
tion, if no further pro
essing is done, is theo

asional 
lassi�
ation of an image, within a 
lass 4 sequen
e, as belonging to 
lass 2. Thisusually o

urs either when the 
amera instantly stops between two pan movements or at theapogee of a 
amera os
illation. For reasons related to the use of memory in 
lass 2 sequen
es,this o

asional dete
tion of a 
lass 2 image may be problemati
. Thus, the algorithm wasimplemented in su
h a way that after two or more su

essive 
lass 4 images, a 
hange into 
lass2 only o

urs after at least three su

essive 
lass 2 images are dete
ted.
A
tivity measures
The purpose of the low-level operators in the segmentation algorithm is not so mu
h to dete
tedges as to dete
t the a
tivity, hopefully the speaker a
tivity, within ea
h image. High a
tiv-ities should indi
ate the presen
e of the speaker, while low a
tivities should be found in theba
kground. It is thus 
lear that the a
tivity measurement pro
ess should vary a

ording tothe 
lass of the sequen
e.
Classes 1 and 3
In this 
ase, where the ba
kground is uniform, a
tivity may be obtained using solely 2D opera-tors. In this algorithm, however, 3D operators where also used, as a way to improve dete
tionwhen the speaker moves. A
tivity is obtained as follows:1. apply the purge operator to the edge lo
alized image di�eren
e;2. apply the \or" operator to the matrix resulting from the previous step and to the edgelo
alized Sobel; and3. apply the �ll operator to the result of the previous step.
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Class 2In this 
ase the ba
kground is stru
tured but it has no motion. Thus, only 3D operators areused. A
tivity is obtained as follows:1. apply the purge operator to the edge lo
alized image di�eren
e; and2. apply the �ll operator to the result of the previous step.This pro
edure eliminates isolated dete
ted pixels but reinfor
es the di�eren
es whenever theyare strong.
Class 4This 
lass 
annot be dealt with by using only one type of operator. Using only 2D operatorsmay make it diÆ
ult to distinguish the speaker from the stru
tured ba
kground, while usingonly di�eren
es may have the same problem whenever the ba
kground motion is 
omparable tothat of the speaker. It thus uses both kinds of operators, as 
lass 2 does, though the a
tivity is
omputed di�erently:1. apply the purge operator to the edge lo
alized image di�eren
e (the variable thresholdapplied to the image di�eren
e now varies with the image rate, as mentioned before);2. apply the \or" operator to the matrix resulting from the previous step and to the edgelo
alized Sobel; and3. apply the purge operator to the result of the previous step.The last step is to purge, instead of to �ll, as in 
lasses 1 and 2, be
ause moving stru
turedba
kgrounds tend to produ
e a too dense a
tivity pattern.
Resolution 
onversionAfter 
lass dete
tion and a
tivity measurements, the next step is to 
onvert the pixel levela
tivity to a MB level a
tivity matrix. This 
onversion is make in two phases:1. the a
tivity matrix is de
imated from pixel to MB resolution, and2. the resulting MB level a
tivity matrix is �ltered to eliminate spurious dete
tions.
De
imationFor 
lass 4 images, de
imation is done simply by 
ounting the number of dete
ted pixels in ea
hMB. If the 
ount ex
eeds a given threshold, the MB is a
tive.For 
lass 1, 2 and 3 images, the de
imation is �rst performed to blo
k level, using the samemethod as before, and then to MB level: a MB is a
tive if any of its blo
ks is dete
ted.The di�eren
e between 
lass 4 images and 
lass 1, 2, and 3 images is that the latter tend toprodu
e more 
on
entrated a
tivities, whi
h might fail to be dete
ted if de
imating dire
tly to
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MB level, unless the threshold would be set to a lower value. However, redu
ing the thresholdwould lead the erroneous dete
tion of regions with more sparsely distributed a
tivities.Di�erent thresholds are maintained for ea
h 
lass whi
h are also 
hanged adaptively, a

ordingto the quality 
ontrol, so as to mat
h the 
urrent sequen
e 
hara
teristi
s, as will be seen later.
FilteringThe �ltering pro
ess 
onsists in the appli
ation of a series of operators:1. Any ina
tive MBs between two a
tive MBs in a line are 
hanged to a
tive. However, thisonly happens if the MB to be 
hanged is within the knowledge-based mask in Figure 4.8(b).2. Ina
tive MBs with three a
tive 4-neighbors are set to a
tive. This �lling, however, avoids�lling the ne
k of the speaker, whi
h is the only 
on
ave part of the typi
al speaker's
ontour: if the ina
tive MB belongs to the left half of the image, hen
e probably also tothe left half of the speaker, and has its right, top and bottom neighbors a
tive, then itwill be �lled only if its left neighbor is also a
tive.3. Segments of lines of at least two a
tive MBs are 
leared, sin
e the speaker's silhouetterarely 
ontains su
h features.4. A
tive MBs without any a
tive 4-neighbors are 
leared.Only sequen
es of 
lasses 1 to 3 undergo this �ltering phase. This type of �ltering is not
onvenient for 
lass 4 sequen
es sin
e these sequen
es require more sophisti
ated geometri
almethods. For 
lass 2 sequen
es the �ltering is applied only after imposing memory, sin
e oftento few MBs are sele
ted without re
ourse to memory.
InertiaIn typi
al videotelephone sequen
es, even in mobile ones, there is usually 
onsiderable redun-dan
y in the evolution of the speaker's position: 
hanges are mostly relatively small from oneimage to the next. This fa
t 
an be used to advantage by building some inertia into the seg-mentation pro
ess.A momentum matrix, with values between 0 and 1, is updated after the segmentation of ea
himage. A matrix element whi
h is 
lose to 1 signals a MB whi
h has been a
tive often in theshort past. After resolution 
onversion to MB level, the momentum matrix is used to 
orre
tthe matrix of a
tive MBs.
Momentum 
orre
tionMomentum 
orre
tion is a very simple pro
ess: all ina
tive elements in the MB a
tivity matrixwith a momentum larger than a threshold are set as a
tive and marked as having been adjusted
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by this pro
ess. The threshold value was 
hosen empiri
ally as 0:39, whi
h gives good resultsin pra
ti
e.
Momentum re
al
ulationEa
h element Mn[i; j℄ of the momentum matrix at image n is updated a

ording to:Mn+1[i; j℄ = 0:7Mn[i; j℄ + 0:3vnwhere vn = 1 if the MB [i; j℄ is a
tive and has not been adjusted during momentum 
orre
tion,otherwise vn = 0.The use of the adjustment information avoids the arti�
ial perpetuation of a
tive MBs. If aMB was a
tive in several images, and hen
e the 
orresponding momentum is approximately 1,it will remain dete
ted for at most the next two images, unless geometri
al pro
essing 
hoosesto 
lear it.
MemoryFor 
lass 2 sequen
es only the 3D image di�eren
e operator is used. Thus, if the speaker doesnot move enough, not enough MBs will be 
onsidered a
tive. The same thing may happen ifthe image rate is too high. In order to solve this problem, an extension to the inertia pro
essdes
ribed above was devised: memory.Memory is imposed during the pro
essing of 
lass 2 images right after the resolution 
onversion.There is a memory matrix 
ontaining the number of image periods (i.e., the time interval)during whi
h a MB should be arti�
ially 
onsidered as a
tive after it has been found to belongto the speaker. This memory is dynami
ally adjusted so as to allow the segmentation to qui
klyadapt (by redu
ing memory or even forgetting about the past) if the speaker starts movingenough and to keep a long memory if the speaker does not move enough.
Memory dynami
sThe number of MBs set after the resolution 
onversion is 
ounted Nn and a moving average Anof it is kept a

ording to: An = 0:5An�1 + 0:5Nn
If Nn is above 120 (more than the minimum typi
al speaker size) and An is above 80, then thememory matrix is reset, sin
e the speaker's motion is strong enough to dispense with the useof memory.If An is below 100 (less than the minimum typi
al speaker size) and the number of MBs redu
edby more than 10 from the previous image, then MBs having a memory larger than zero andsmaller than 10 images have their memory in
remented by 10=r, where r is the ratio between
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25 and the 
urrent image rate. This will tend to prolong the memory of previously dete
tedMBs when the speaker's motion starts to de
rease.The memory matrix is then de
remented, thereby redu
ing the memory of all MBs dete
ted.Finally, a memory is attributed to the 
urrent a
tive MBs a

ording to the value of An:

1. if An < 10, then memory is set to 100=r;2. otherwise, if An < 20, then memory is set to 80=r;3. otherwise, if An < 40, then memory is set to 50=r;4. otherwise, if An < 80, then memory is set to 30=r;5. otherwise, memory is set to 1=r;At the �nal stage the MB a
tivity matrix is substituted by the memory matrix. If an elementin the memory matrix has a non-zero memory, the 
orresponding element in the a
tivity matrixis 
onsidered a
tive.
Geometri
al pro
essingAs intermediate steps between resolution 
onversion and quality estimation, several geometri
knowledge-based operators are applied in order to build a segmentation matrix from the MBlevel a
tivity matrix. These operators aim at produ
ing a segmented region whi
h \makessense", given that it should represent a human speaker in a normal head-and-shoulders framing.Some of these operators use heuristi
 knowledge-based masks having highest values where it ismore likely to �nd part of the speaker's body, see Figure 4.8.Di�erent operators are applied to sequen
es of di�erent 
lasses.
Classes 1 to 3Four operators are applied in order:

1. All ina
tive MBs having at least three a
tive 4-neighbors are set to a
tive. The pro
ess is
ontinued re
ursively until no 
hanges are made. The 
hanges, however, are only allowedto happen inside the wide knowledge-based mask in Figure 4.8(b). This operator �llssmall holes inside the speaker's silhouette.2. All a
tive MBs having no more than one a
tive 4-neighbor are set to ina
tive in a re
ursivemanner. This operator 
lears erroneously dete
ted MBs due to noise or stru
ture in theba
kground.3. The 
onne
ted 
omponents of the a
tive part of the MB a
tivity matrix are identi�ed. All
onne
ted 
omponents, ex
ept the largest, are 
leared. The largest 
onne
ted 
omponentis kept be
ause it is deemed to 
orrespond to the speaker's silhouette. The 
onne
ted
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(a) Narrow mask.

(b) Wide mask.
Figure 4.8: Knowledge-based heuristi
 masks.
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omponents are de�ned in terms of a 4-neighborhood stru
ture superimposed to the MBa
tivity matrix.4. The 
onne
ted 
omponents of the ina
tive part of he MB a
tivity matrix are identi�ed.They 
orrespond to the ba
kground. All ba
kground 
onne
ted 
omponents with less than10 MBs are set to a
tive. Larger 
onne
ted 
omponents are only set to a
tive if they donot in
lude any MB whi
h tou
hes the border of the image. I.e., of the larger ba
kground
onne
ted 
omponents only those whi
h are holes are 
leared.

Class 4The same operators as for 
lasses 1 to 3 are applied, but they are pre
eded by:
1. The 
onne
ted 
omponents of the a
tive part of the MB a
tivity matrix are identi�ed. All
onne
ted 
omponents, ex
ept the largest, are 
leared, but only if these 
onne
ted 
ompo-nents do not have any MBs inside the narrow knowledge-based mask in Figure 4.8(a). Thelargest 
onne
ted 
omponent is kept be
ause it is deemed to 
orrespond to the speaker'ssilhouette. Unlike the similar operator whi
h is applied in the 
ase of sequen
es of 
lasses 1to 3, more than one 
onne
ted 
omponent may result, sin
e 
onne
ted 
omponents tou
h-ing the areas where the user may be with a high probability are not 
leared. The 
onne
ted
omponents are again de�ned in terms of a 4-neighborhood stru
ture superimposed to theMB a
tivity matrix.2. Ina
tive MBs with three a
tive 4-neighbors are set to a
tive. This �lling, however, avoids�lling the ne
k of the speaker using the same te
hnique as in the �ltering part of resolution
onversion.3. Stru
tures with shapes that are unlikely to belong to a real speaker's silhouette are 
leared.The operator sear
hes for su
h stru
tures on the left and right sides of the estimated headposition. The shapes 
onsidered invalid are those 
orresponding to large regions 
onne
tedto a side of the head by a small or highly bent isthmus of a
tive MBs.4. Ina
tive MBs between lines (at least two MBs long) of a
tive MBs are set to a
tive. Thisoften joins together the head and body whi
h would otherwise remain separated.

Ne
k lo
alizationBefore quality estimation, the segmentation result is analyzed so as to try to estimate theposition of the line separating head and body, the ne
k line. The algorithm developed for thispurpose uses geometri
al, knowledge-based reasonings. It also uses feedba
k from the estimatesobtained in previous images in order to avoid large 
hanges from image to image 
aused byerrors in the segmentation results.The ne
k position estimation algorithm tries to estimate the head width and then sear
hes fromtop to bottom for the �rst pair of MB lines whose width ex
eeds 1.7 times the head width.These lines will likely 
orrespond to the speaker's shoulders. Sin
e the speaker's 
hin often
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prolongs somewhat below the line of the shoulders, the �rst of these shoulder lines is deemedto belong to the head and the se
ond to the body.The estimated shoulder line is only allowed to 
hange by one MB line per image, so as to averageout errors during its estimation.The a
tive MBs are then 
lassi�ed as either belonging to the body (those below the shoulderline) or to the head. If the shoulder line was not found, no su
h distin
tion is made.
Knowledge-based quality estimationThe quality estimation algorithm tries to as
ertain whether the a
tive MBs, whi
h identifythose parts of the image (in MB resolution) where the speaker is believed to be, 
orrespond toan appropriately sized and positioned speaker in a typi
al head-and-shoulders videotelephones
ene. It �rst 
ounts the total number T of dete
ted MBs and the total number TK of dete
tedMBs inside the narrow knowledge-based mask (see Figure 4.8(a)). Then:1. if T > 300, the speaker size is 
onsidered very large, and the segmentation is dis
arded;2. otherwise, if T > 200, the speaker size is 
onsidered large,11 and hen
e the segmentationis dis
arded and the a
tivity resolution 
onversion threshold is in
reased (this 
hangea�e
ts only the subsequent image);3. otherwise, if TK < 0:5T or if T < 60, the speaker position is 
onsidered displa
ed orits size too small, and thus the segmentation is dis
arded and the a
tivity resolution
onversion threshold is redu
ed (a�e
ts the subsequent image);4. otherwise, the quality is a

eptable, hen
e the segmentation is a

epted and no thresholdadjustments are done.The quality estimation des
ribed so far was developed mainly for segmentation quality 
ontrolpurposes, though it does reje
t low quality segmentation results.A di�erent quality assessment pro
edure is also used, although this time only for the a

ep-tan
e/reje
tion pro
ess. It uses geometri
 knowledge-based 
riteria to de
ide whether the seg-mentation result, in term of the attained head and body shape, is a

eptable. It is based on theratio between head height and visible body height in typi
al videotelephone s
enes. If the bodyis wider than about 90% of the image width and the head height is smaller than 56% of thevisible body height, then the shape is de
lared disproportionate, the segmentation is deemedinvalid and its results are reje
ted.Whenever quality estimation leads to reje
tion, the segmentation matrix is �lled with the valuerepresenting ba
kground everywhere. This situation often happens during the �rst few imagesafter a s
ene 
ut or a large pan or zoom. Su
h reje
tion of segmentation results, in the frameworkof �rst-generation video 
oding te
hniques, is not too problemati
, unless it o

urs often: it justmeans that no quality dis
rimination will be made during a reje
tion. Sin
e quality tends toin
rease and de
rease slowly in time when temporal predi
tion is used in typi
al �rst-generation
ode
s, the subje
tive impa
t of reje
tion of segmentation results is small.11Always 
onsidering CIF format. The number of MBs in CIF is 396, hen
e 200 
orresponds to a
tivity in alittle above half the image area.
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When the segmentation results for a given image are 
onsidered una

eptable (region too large,too small, or displa
ed) and hen
e reje
ted, the segmentation of the next image is also reje
ted.Sin
e often reje
tion stems from s
ene 
uts or large 
hanges, this method allows for somere
overy time before segmentation is a

epted. The rationale being that it is better to have nosegmentation than to have a bad segmentation.
Quality 
ontrolThe segmentation algorithm uses delayed quality 
ontrol: the estimated quality of the 
urrentsegmentation a�e
ts only the segmentation of future images. This method has the advantagethat is keeps the 
omputational requirements of the algorithm small.Quality 
ontrol is done in two ways:

1. If the estimated segmentation quality leads to 
onsidering the speaker size very large,the inertia matrix is reset, thus eliminating partly eliminating in
uen
e of the past intothe future. This makes sense be
ause most reje
tions of segmentation o

urring for thisreason take pla
e at s
ene 
hanges, where the sequen
e 
hara
teristi
s vary 
onsiderablyand 
hanges from one image to the next are very large. In the 
ase of 
lass 2 sequen
es,however, memory is not reset, as it would thus lead to the slow rebuilding of the segmen-tation based solely on 3D operators. The memory is reset only when the estimated 
lass
hanges.2. The resolution 
onversion thresholds are 
hanged a

ording to the estimated quality in away whi
h depends on the 
urrent image 
lass:Classes 1 and 3The threshold is initially 13 pixels (about 20% of the pixels of a blo
k). When thespeaker size is deemed very large, the threshold is in
reased by 6 (but limited to amaximum of 26, or 41%). When the speaker size is 
onsidered large, the threshold isin
reased by 3 (again limited to a maximum of 26, or 41%). When the speaker sizeis too small or its position displa
ed, the threshold is redu
ed by 6 (but limited to aminimum value of 13, or 20%). Nothing 
hanges otherwise.Class 2The threshold is initially 6 pixels (about 9% of the pixels of a blo
k). When thespeaker size is deemed very large, the threshold is in
reased by 6 (but limited to amaximum of 26, or 41%). When the speaker size is 
onsidered large, the threshold isin
reased by 3 (again limited to a maximum of 26, or 41%). When the speaker sizeis too small or its position displa
ed, the threshold is redu
ed by 6 (but limited to aminimum value of 1, or 2%). Nothing 
hanges otherwise.Class 4The threshold is initially 110 pixels (about 43% of the pixels of a MB). When thespeaker size is deemed very large, the threshold is set to its initial value of 110 pixels.When the speaker size is 
onsidered large, the threshold is in
reased by 20 (butlimited to a maximum of 173, or 68%). When the speaker size is too small or its
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position displa
ed, the threshold is redu
ed by 15 (but limited to a minimum valueof 95, or 37%). When the speaker size and position are a

epted, the threshold isredu
ed by 15, but only if it is larger than 125.

4.4.3 Computational e�ortA thorough 
omputational e�ort analysis of the algorithm has not been done. However, 
ompileroptimized12 
ode segmenting the \Foreman" sequen
e (a 25 Hz sequen
e 
onsisting mostly of
lass 4 images) in a Sun Spar
 10 spent about 40% of its time in the purge operator, whi
hinvolves just 
omparisons and memory addressing operations. Also, the operation intensiveSobel, requiring (with non-optimized 
ode) 11N sums and 4N multipli
ations by 2 (shift lefts),where N is the total number of pixels, 
ontributed to about 10% of the time. Hen
e, the restof the pro
essing, though more involved from an algorithmi
 point of view, did not a

ountbut to about 50% of the time. These �gures hint that the 
ode eÆ
ien
y 
an be in
reased byoptimization and/or hardware implementation of the bit-level operators.
4.4.4 ResultsSeveral standard videotelephone test sequen
es were used:
\Foreman" (25 Hz)Most of the time a 
lass 4 sequen
e.\Carphone" (25 Hz)Most of the time a 
lass 4 sequen
e.\Claire" (10 Hz)A typi
al 
lass 1 sequen
e.\Miss Ameri
a" (10 Hz)Also a typi
al 
lass 1 sequen
e.\Trevor" (se
ond shot only, 10 Hz)A typi
al 
lass 2 sequen
e.\Salesman" (30 Hz)Also a 
lass 2 sequen
e.
The \Claire", \Miss Ameri
a" and \Trevor" sequen
es used are all part of a single 10 Hz imagerate sequen
e named \VTPH" (for videotelephone).The results obtained were good, as 
an be seen in the representative images in Figure 4.9.Comparable results were obtained repeating the above experiments for the same sequen
esdownsampled to 5 Hz image rate (downsampling by image dropping). Noti
e that the �rst12Using a g

 2.* 
ompiler.
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image of the sequen
es is not segmented by the algorithm, sin
e there is no past image to beused by the 3D operators.

(a) \Foreman" image 2 (b) \Carphone" image 2

(
) \VTPH" image 2 (\Claire" image6) (d) \VTPH" image 126 (\Miss Amer-i
a" image 125)

(e) \VTPH" image 143 (\Trevor" im-age 96) (f) "Salesman" image 10
Figure 4.9: Knowledge-based segmentation results for several videotelephone sequen
es.
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4.4.5 Con
lusionsA new MB level knowledge-based segmentation algorithm for videotelephone sequen
es hasbeen developed whi
h is able to 
ope with a wide range of sequen
es. It was developed has anevolution of the algorithms in [160, 166℄. The algorithm demands relatively low 
omputationalpower, sin
e most of the pro
essing is done at MB level, whi
h has 256 less elements than theoriginal images.The algorithm is a good 
andidate for integration in very low bitrate �rst-generation video
oders. The estimation of the speaker's position 
an be used to improve the subje
tive qualityof the en
oded sequen
e by in
reasing the obje
tive quality of the image at the speaker's fa
eand body at the expense of a redu
ed obje
tive quality in the ba
kground (whi
h is subje
tivelyless important).A 
lassi�
ation of videotelephony sequen
es has been proposed. A

ording to it, sequen
es 
anbe 
lassi�ed as belonging to 
lasses 1 and 3|uniform ba
kground|, 
lass 2|non-uniform but�xed ba
kground|, and 
lass 4|non-uniform moving ba
kground.
4.5 RSST segmentation algorithms
This se
tion presents a new image segmentation algorithm whi
h is based on the RSST 
on
ept[134℄ and on split & merge (with elimination of small regions) [72℄. Unlike [72℄, the regionsare merged by order of similarity (or uniformity of the result), and the elimination of smallregions is but an intermediate step of the pro
ess. Unlike [134℄, the problem of small regionsis dealt with. Also, a mathemati
al morphology image simpli�
ation te
hnique is proposedfor appli
ation before segmentation, whi
h is typi
ally used in Watershed algorithms su
h asthe one in Sesame [30℄. The resulting algorithm has a performan
e 
omparable to the RSSTalgorithm in [194℄, although with a slightly less elegant formulation. This algorithm is the resultof 
olle
tive work, and was �rst proposed in [32, 33℄.The new algorithm presented is 
ompared with the RSST algorithm proposed in [194℄, andwith its extension using an aÆne, instead of 
at, region model. The performan
e of these otheralgorithms is also assessed when the image simpli�
ation pre-pro
essing and the split phase ofthe new algorithm are added.The outline of the new algorithm is as follows. Images are �rst simpli�ed using a mathemati
almorphology operator, whi
h attempts to eliminate less per
eptually relevant details. The sim-pli�ed image is then split a

ording to a QPT and the resulting regions are then merged usingone of three 
riteria: merge, elimination of small regions and 
ontrol of the number of regions.The split phase generally produ
es an over-segmented image, its interest stemming from the re-du
tion in the total number of regions, whi
h leads to a redu
ed 
omputational e�ort, espe
iallywhen 
ompared to the typi
al region merging solutions, where ea
h pixel is initially 
onsideredas an individual region.The merge 
riterion merges su

essively the most similar adja
ent regions resulting from the
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split step, thus removing the false boundaries introdu
ed by the QPT stru
ture used.The elimination of small regions 
riterion removes a large number of the small, often less rel-evant, regions whi
h typi
ally result when the merge 
riterion starts to fail. If not eliminated,small regions lead frequently to an erroneous �nal segmentation, sin
e they have a large 
on-trast relative to their surroundings. Small regions are eliminated by merging them to their mostsimilar neighboring regions.The 
ontrol of the number of regions 
riterion is similar to the merge step. However, this
riterion fails when a 
ertain �nal number of regions is attained (or, alternatively, when athreshold of region dissimilarity is ex
eeded).At ea
h step the algorithm produ
es segmented images with one less region. Hen
e, it 
anbe seen as originating an image hierar
hy with in
reasing simpli�
ation levels. There are twosour
es of image simpli�
ation in the algorithm. Firstly, simpli�
ation in a pre-pro
essing step,whi
h eliminates details whi
h are deemed irrelevant before applying the three other steps of thealgorithm: merging, eliminating small regions, and 
ontrolling the number of regions. Se
ondly,the segmentation itself 
an be seen as su

essively simplifying the image, by approximating itwith the same region model (in the 
ase the 
at region model) over larger and larger regions.
4.5.1 Pre-pro
essingSin
e more often than not images are meant to be appre
iated by humans, the e
onomy ofrepresentation mandates that details whi
h are per
eptually less relevant from the HVS pointof view should be eliminated as mu
h as possible. This pro
ess is labeled simpli�
ation. It isdone in part by the segmentation algorithm itself, but it may be advantageous to simplify theimage before performing segmentation proper. The purpose of the pre-pro
essing stage is thusto simplify the original image in order to eliminate at least part of the less relevant information.In
identally, this may also redu
e the 
omputational load of the subsequent segmentation steps.A typi
al method of simplifying an image is by using low pass �lters with an appropriate regionof support (typi
ally a �nite window, so that FIR �lters 
an be used). However, these �lters tendto attenuate the 
olor transitions 
orresponding to physi
al edges. Some may even modify theirposition. These e�e
ts 
an have a very negative impa
t on the segmentation results, espe
iallyin terms of boundary lo
alization.Tools without the aforementioned problems have been proposed in [176℄, namely the opening-
losing by re
onstru
tion operator '
(re
)(n)(�)'
(re
)(n)(I) = '(re
)(n)(
(re
)(n)(I))and the 
losing-opening by re
onstru
tion operator 
'(re
)(n)(�)
'(re
)(n)(I) = 
(re
)(n)('(re
)(n)(I));both of whi
h produ
e 
omparable (if di�erent in general) results. These mathemati
al mor-phology operators [181, 180℄ are based on geodesi
 erosion and dilation operators as spe
i�edin [34℄ (see also [33℄ for details).
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These opening-
losing and 
losing-opening operators by re
onstru
tion eliminate both brightand dark details without 
orrupting thin edges and without a�e
ting edge positioning. Fig-ure 4.10 exempli�es its appli
ation to image 50 of the \Table Tennis" sequen
e. In this work,simpli�
ation was always performed by �rst 
onverting the sequen
e to R0G0B0 
olor spa
e andthen simplifying ea
h 
olor 
omponent of the image separately. This is arguably not an optimalsolution, sin
e the simpli�
ations are thus introdu
ed independently in ea
h 
omponent. How-ever, these non-linear operators do not translate easily into a non-s
alar world and, besides, theresults obtained in pra
ti
e seem to be a

eptable.In simpli�
ation there is a trade-o� between 
omputational load and �nal segmentation quality.In
reasing too mu
h the simpli�
ation redu
es the 
omputational load, but 
an also de
reasethe �nal segmentation quality. On the other hand, an adequate simpli�
ation degree may infa
t improve the segmentation results by redu
ing the e�e
t of undesirable image features, su
has noise and less relevant details.
4.5.2 Segmentation algorithmThe segmentation algorithm 
onsists of two phases: the split phase and the merge phase.
SplitDuring the split phase, the image is re
ursively split into smaller regions a

ording to a QPTstru
ture. At ea
h step a region is analyzed and, if it is 
onsidered inhomogeneous, it is split intofour. The adopted homogeneity 
riteria was the dynami
 range, sin
e the use of the varian
eor the use of the similarity between the average 
olors of the four sub-regions both were foundin [33℄ to lead to worst results. Hen
e, for an image i[�℄ to segment, a re
tangular region R issplit if maxv2R i[v℄�minv2R i[v℄ � ts, where ts is the split threshold.The main purpose of this step is to redu
e the 
omputational load of the merge step and hen
eof the overall algorithm: the smaller the initial number of regions for the merging steps, the lessmemory is used. There is a 
ompromise between 
omputational e�ort and segmentation quality:the higher the threshold, the lower the number of regions and hen
e 
omputational 
osts, but thehigher the inhomogeneity of the resulting regions. In order to avoid 
ompromising segmentationquality, the split threshold is typi
ally set to a low value, so that after the split step the regionshave a nearly 
onstant grey level. In this work a threshold of ts = 12 has been 
hosen empiri
allyso as to lead to a

eptable results for a wide range of test sequen
es.
MergeMerging is a
tually based on three 
riteria, whi
h are tried in sequen
e at ea
h step of thealgorithm. First, an attempt to merge by order of region similarity is performed: the two mostsimilar adja
ent regions are merged, but only if their 
olor distan
e is small enough. If theprevious 
riterion fails, the smallest region, if 
onsidered small enough, is merged to its mostsimilar neighboring region. If that also fails, then the two most similar adja
ent regions are
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(a) Original.

(b) Simpli�
ation of ea
h R0G0B0 
omponent with theopening-
losing by re
onstru
tion operator using a 3�3stru
turing element.
Figure 4.10: \Table Tennis" image 50.
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merged, but now only if the number of regions in the partition still ex
eeds the number ofrequired regions. These three 
riteria will be detailed in the following.
Merge by similarity
This is the �rst 
riterion of the merge phase of the algorithm. Merging, in this 
ase, is based onthe distan
e between the average 
olors of the pairs of adja
ent regions, as in [134℄. In [33℄ twodi�erent homogeneity 
riteria were tested, namely the dynami
 range and the varian
e of the
olor on the union of the two regions. Both alternatives were dis
arded sin
e they 
onsistentlyled to worst results. As in [134℄, regions are merged in non-de
reasing order of similarity. Inthis 
ase, however, the merge takes pla
e only if the 
olor distan
e of the two regions to bemerged is below the so-
alled merge threshold tm.
Elimination of small regions
This is the se
ond 
riterion of the merge phase of the algorithm. Many small, per
eptuallyless relevant, regions tend to remain after the merge step. These regions are usually 
ontrastedwith their surroundings, and hen
e are not easily merged into the larger, more per
eptuallyrelevant, neighbors by the merge by similarity 
riterion of the previous se
tion. These smallregions, if not dealt with adequately, usually lead to erroneous �nal results. It is 
ommon, ifsmall regions are not eliminated, that the majority of the �nal regions are small and more oftenthan not irrelevant, while the most per
eptually relevant regions are merged together or intothe ba
kground.In this step, any region not larger than 0:004% of the total image area (4 pixels in a CIF image)is eliminated. Afterwards, regions smaller than 0:02% of the total image area (20 pixels in a CIFimage) are eliminated by in
reasing size, but only while the overall area of eliminated regionsis not larger than 10% of the total image area. In 
ase of size ties, the similarity betweenthe small regions and any of their neighbors is used to de
ide whi
h of the small regions toeliminate. The thresholds were 
hosen empiri
ally so as to lead to reasonable results for awide variety of test images. This algorithm outperforms the one in [134℄, sin
e the problemof small regions was not 
onsidered there. An evolution of the algorithm in [134℄, presentedin [194℄, minimizes 
ontributions to the global approximation error, and yields results whi
h aregenerally better. It has the additional advantage that it does not re
ur to empiri
al thresholdsand ad-ho
 elimination of small regions.The elimination, in the algorithm proposed here, is always done by merging the small regionsto the most similar adja
ent region. When merging a small region into a larger neighbor, thealgorithm does not 
hange the larger neighbor parameters (e.g., grey level average, varian
e,et
.). Thus, small regions do not \pollute" the average 
olor of the larger regions they aremerged to.
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Control of the number of regionsThe obje
tive of the third 
riterion of the merge phase is to 
ontrol the segmentation result interms of the �nal number of regions. It is equal to the merge step, though now the pro
essstops when the required number of regions is attained. Sin
e this step su

essively produ
essegmented images with a de
reasing number of signi�
ant regions, it 
an be seen as originatingan image hierar
hy with in
reasing simpli�
ation levels.In 
omparison to the algorithm in [194℄, where a maximum global approximation error 
an beused to de
ide when to stop the algorithm (using a single threshold), either the �nal numberof regions or the maximum 
olor distan
e of the regions have to be used, both of whi
h have amu
h less 
lear relation to the global segmentation quality.
4.5.3 Results and dis
ussionThe algorithm proposed in the previous se
tions is 
ompared with the RSST algorithm presentedin [194℄, whi
h uses a 
at region model, and with the RSST algorithm in [194℄ updated to usethe aÆne region model. These algorithms will be referred to as new RSST, 
at RSST, and aÆneRSST, respe
tively, even though the last two are a
tually the same algorithm using di�erentregion models. The last two algorithms were also tried with an initial split phase, so as toobserve the 
hanges in results in terms of quality and 
omputational eÆ
ien
y.The next se
tion des
ribes the experimental 
onditions, and the ones following it present anddis
uss the results. First the new RSST algorithm will be dis
ussed. Then, it will be 
omparedto the 
at RSST algorithm. Finally, the strengths and weaknesses of the aÆne region model willbe assessed by 
omparing the 
at and aÆne RSST algorithms. These 
omparisons all assumealgorithms without a split phase. The advantages of the split phase will be dealt with in aseparate se
tion.
Experimental 
onditionsThe new RSST segmentation algorithm was run always with ts = 12 (when a split phase wasused) and tm = 10. These spe
i�
 thresholds were 
hosen empiri
ally, sin
e it was observedthat they led to reasonable results for a wide range of images.The test images are the �rst images of some of the sequen
es des
ribed in Appendix A. Allexperiments were run until a �nal number of 25 regions was attained, with a few ex
eptionswhere, in order to show some spe
ial feature of an algorithm, a smaller number of regions wasused. Sin
e a �xed number of regions was used, the results should be 
ompared a

ording tothe overall uniformity, or approximation quality. Noti
e that the inverse pro
edure might beused, i.e., establishing a �nal quality and 
omparing the number of regions required. However,sin
e the new RSST algorithm does not aim expli
itly at maximizing quality, this would 
om-pli
ate the stopping 
ondition of the algorithm needlessly. In pra
ti
e, on the other hand, bothobje
tives (a given quality with the smallest possible number of regions, or the highest possiblequality for a given number of regions) may make sense depending on the appli
ation.
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The test images are all either CIF of QCIF (Quarter-CIF) in terms of spatial resolution. Re-gardless of the size of the image to segment, however, and before the split phase (when it exists),the image has been un
onditionally split into 32� 32 blo
ks, instead of starting with the wholeimage.13 In those 
ases where the split phase is not used, the image is initially divided intoblo
ks of a given size, typi
ally with a single pixel.When simpli�
ation is used, a 3 � 3 (n = 1) stru
turing element (see Figure 4.10) was 
hosenempiri
ally, sin
e it produ
ed good results for a wide range of images.The segmentation results are presented in the form of a pi
ture where the region borders aredrawn in bla
k and the region interiors are drawn a

ording to the estimated parameters of theparametri
 model used (i.e., either the 
at region model, for the new and 
at RSST, or theaÆne region model, for the aÆne RSST) or with the texture of the original image.
The new RSST algorithm
Image simpli�
ation and elimination of small regions
Figure 4.11 shows the same test image segmented with the new RSST algorithm. The resultusing both pre-pro
essing (image simpli�
ation) and elimination of small regions 
an be seento be a

eptable. However, neither elimination of small regions nor image simpli�
ation bythemselves yield a

eptable results (remember that the four results have exa
tly 25 regions).Image simpli�
ation, on the one hand, has a limited power in removing detail: if a windowlarger than 3�3 is used, and even though the morphologi
al �lter used tends to preserve edges,the boundary positioning su�ers. On the other hand, small region removal, being based solelyon region size, 
an hardly solve the problem in a totally generi
 way. The 
ombination of thetwo, however, yields an algorithm whi
h is mu
h more robust, even though somewhat inferiorto the 
at RSST, as will be seen in the next se
tions.Noti
e that, without either simpli�
ation or removal of small regions, a 
onsiderable proportionof the total number of regions is rather small and per
eptually irrelevant. They exist as separateregions be
ause they have a strong 
ontrast to their surroundings. None of the RSST algorithms(new, 
at, and aÆne) fully solves the problem of sele
ting regions a

ording to their per
eptualrelevan
e. However, it will be seen that 
at and aÆne RSST partially solve the problem byimpli
itly assuming larger regions to be more relevant than smaller ones, instead of relyingsolely on 
ontrast, as does the new RSST when small regions are not removed.Also noti
e that, without removal of small regions and without the split phase, the new RSSTalgorithm is essentially the same as the RSST algorithm in [134℄.The results presented in the following se
tions for the new RSST algorithm assume that imagesimpli�
ation and removal of small regions are indeed performed.13For images whose size is not a multiple of 32, whi
h is the 
ase of the QCIF test images, the top-leftmostblo
k is always 32�32, whi
h means the blo
ks along the bottom and right border of the image may be re
tangles.
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(a) Without small region removal, without sim-pli�
ation. (b) Without small region removal, with simpli�-
ation.

(
) With small region removal, without simpli�-
ation. (d) With small region removal, with simpli�
a-tion.
Figure 4.11: \Claire" image 0: segmentation into 25 regions using the new RSST algorithm(without the split phase).
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Control of the number of regions
This step 
ontrols the �nal number of segmentation regions, hen
e impli
itly 
ontrolling the �nallevel of detail of the segmentation. Figure 4.12 shows the results of the new RSST algorithmwith 20 to 5 regions. It 
an be 
learly seen that these segmentations form a hierar
hy ofde
reasing detail.

(a) 20 regions. (b) 15 regions.

(
) 10 regions. (d) 5 regions.
Figure 4.12: \Claire" image 0: segmentation into 20 to 5 regions using the new RSST algorithm(without the split phase).
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The 
at RSST algorithm
Image simpli�
ation
Image simpli�
ation, as a pre-pro
essing step, does not yield signi�
ant improvements in the
ase of the 
at RSST algorithm. An example 
an be found in Figure 4.13, where the \Carphone"sequen
e is segmented with and without simpli�
ation. This insensitiveness to the e�e
ts ofsimpli�
ation are due to the fa
t that, in algorithms attempting to redu
e the global approxi-mation error, as is the 
ase of the 
at RSST algorithm, small regions tend to be merged sooner.Hen
e, segmentation itself 
an be seen as a simpli�
ation pro
ess, whi
h eliminates su

essivelythe details of the image, and a simpli�
ation pre-pro
essing step is redundant.Sin
e simpli�
ation, for algorithms attempting to minimize the global approximation error,is performed by the algorithm itself, the results presented in the following for both the 
atand aÆne RSST algorithms assume that no image simplifying pre-pro
essing is done prior tosegmentation.
Comparison with the new RSST algorithm
Figure 4.14 shows segmentation results of four di�erent test images using the new and the 
atRSST algorithms. The same segmentation results are shown in Figure 4.15 superimposed onthe original images, so that the boundary a

ura
y 
an be assessed more easily.For all but the \Flower Garden" sequen
e the results attained are 
omparable, if slightly betterin the 
ase of the 
at RSST. Flat RSST seems to yield regions whi
h are globally more signi�
ant,even though it tends to eliminate small details whi
h are semanti
ally relevant but whi
h donot 
ontribute mu
h to the global error. It is the 
ase of the eyes of \Claire" and the shadesin the ball in \Table Tennis". However, it must be remembered that these details are takeninto a

ount in the new RSST algorithm not be
ause of their semanti
al relevan
e, but simplybe
ause they are 
ontrasted to their surroundings. Also, 
at RSST tends to produ
e morefalse 
ontours, i.e., region boundaries neither 
orresponding to transitions in the image nor tophysi
al edges in the s
ene. However, these false 
ontours stem not so mu
h from the algorithmas from the model used. As will be seen in the next se
tion, more sophisti
ated region modelstend to solve the false 
ontour problem. Other methods for removing false 
ontours 
an befound in [194℄.In the 
ase of the \Flower Garden" sequen
e the 
at RSST algorithm greatly outperformsthe new RSST algorithm. This is due to the fa
t that the new RSST algorithm relies ona somewhat ad-ho
 method for removing small regions, whi
h are very abundant in su
h atextured image. The parameters (thresholds) used in the elimination of small region 
riterionwere 
hosen empiri
ally so as to yield a

eptable results in general. The fa
t that there aresequen
es su
h as \Flower Garden" where the new RSST algorithm fails (unless the thresholdsare adjusted in a rather ad-ho
 way) and the fa
t that the 
at RSST yields a

eptable resultsalso for these problemati
 sequen
es, proves that the 
at RSST algorithm is indeed more generi
than the new RSST algorithm.
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(a) Without simpli�
ation

(b) With simpli�
ation
Figure 4.13: \Carphone" image 0: segmentation into 25 regions using the 
at RSST algorithm.
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Figure 4.14: \Carphone", \Claire", \Flower Garden", and \Table Tennis" (image 0): segmen-tation into 25 regions using the new RSST algorithm (left) and the 
at RSST algorithm (right).No split phase was used.
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Figure 4.15: \Carphone", \Claire", \Flower Garden", and \Table Tennis" (image 0): segmen-tation into 25 regions using the new RSST algorithm (left) and the 
at RSST algorithm (right).No split phase was used. Boundaries superimposed on the original.
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Using an aÆne model
The RSST algorithm proposed in [194℄, whi
h uses the 
at region model, was adapted to usethe aÆne region model. Figure 4.16 shows the results of segmenting a few test images with su
han algorithm.It must be noti
ed here that the images segmented in Figure 4.16 are QCIF size. This is due tothe fa
t that the region model parameters o

upy 
onsiderable more memory for the aÆne regionmodel than for the 
at region model, whi
h rendered segmentation of CIF images impra
ti
alwhenever a split phase was not used. However, the implementation of the algorithms did notattempt to minimize the required memory. With a suitably optimized implementation, CIFimages and beyond might well be within the powers of a normal PC.The results show 
onsiderable boundary raggedness. The reason for this raggedness is thatthe aÆne model adjusts with error zero to any region with up to three pixels (in 2D). Hen
e,when starting from one-pixel regions, the �rst merges are essentially random, sin
e all merges
ontribute zero to the global error, and the algorithm does not spe
ify what to do in 
ase of ties.Despite this fa
t, it 
an be seen that the model is powerful enough to represent shaded areas,for instan
e in the building in the ba
kground of \Foreman" or in the arm of \Table Tennis".
Comparison with the 
at RSST algorithm
Figure 4.17 shows the 
omparison of the aÆne model to the 
at model (both in the frameworkof a global error minimization RSST, i.e., 
at and aÆne RSST), when the image is initiallysplit into 2 � 2 blo
ks. An area of four was 
hosen to avoid the problem des
ribed above ofover adjustment of the model to the data inside very small regions, whi
h leads to boundaryraggedness. Sin
e the initial number of regions is divided by four, the results are presentedfor CIF sized sequen
es, whi
h have the same memory requirements. The same segmentationresults are shown in Figure 4.18 superimposed on the original images, so that the boundarya

ura
y 
an be assessed more easily.The use of initial 2 � 2 blo
ks leads to inevitable loss of resolution in boundary positioning.However, when the 
at region model is used in the same 
ir
umstan
es, the aÆne region modelleads to an e
onomy of representation whi
h is not possible with the 
at model. See for instan
ethe red sleeve or the ball in \Table Tennis", whi
h are now well represented with a smallernumber of regions. Also, the use of more powerful region models leads to less false 
ontours, as
an be seen in the ba
kground of \Table Tennis" and \Claire".The use of 2 � 2 blo
ks has other drawba
ks, besides lost resolution in boundary positions. Ablo
k may fall in a transition whi
h is two pixels thi
k, thus 
reating a new region whi
h maynever again be merged to either side. Both these problems might be solved by an improvedalgorithm where the resulting regions might be split wherever ne
essary and then re-merged, orsimply by post-pro
essing the boundaries pixel by pixel, de
iding whether they should belongor not to any of the adja
ent regions [146℄.
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Figure 4.16: \Carphone", \Claire", \Foreman", and \Table Tennis" (QCIF, image 0): segmen-tation into 25 regions using the aÆne RSST algorithm; boundaries superimposed over the 
olora

ording to the estimated region model parameters (left) and over the original image (right).No split phase was used.
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Figure 4.17: \Carphone", \Claire", \Flower Garden", and \Table Tennis" (image 0): segmenta-tion into 25 regions using the 
at RSST algorithm (left) and the aÆne RSST algorithm (right).Images initially split into 2� 2 blo
ks.
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Figure 4.18: \Carphone", \Claire", \Flower Garden", and \Table Tennis" (image 0): segmenta-tion into 25 regions using the 
at RSST algorithm (left) and the aÆne RSST algorithm (right).Images initially split into 2� 2 blo
ks. Boundaries superimposed on the original.
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Advantage of using a split phaseFigure 4.19 shows the segmentation of the �rst image of the QCIF \Carphone" using the aÆneRSST with and without a split phase.

(a) Without split.

(b) With split.
Figure 4.19: QCIF \Carphone" image 0: segmentation into 25 regions using the aÆne RSSTalgorithm.These results show 
learly that the use of a split phase, aside from leading to 
onsiderablein
rease of 
omputational eÆ
ien
y and redu
tions in memory requirements, has a very pos-itive impa
t on the performan
e of the algorithm. This performan
e 
an also be assessed inFigure 4.20, whi
h 
ompares the 
at RSST algorithm (without split) with the aÆne RSST al-
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gorithm using the split phase, this time applied to the CIF \Carphone". Noti
e that, as will beseen in the next se
tion, the split phase does not yield signi�
ant improvements in segmentationquality in the 
ase of the 
at RSST. In fa
t, the aÆne RSST is the only algorithm whose seg-mentation quality improves with a split phase. This e�e
t is easily explained by the fa
t that,using a split phase, the attained regions are seldom small, thus avoiding the over adjustmentdes
ribed previously.

(a) Flat RSST without split.

(b) AÆne RSST with split.
Figure 4.20: \Carphone" image 0: segmentation into 25 regions.It may be argued, and probably very rightly so, that the results might be further improved ifsplitting were done also using the aÆne model; for instan
e, by splitting regions while the averagesquared approximation error is above a threshold. This issue, as well as the more interesting
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problem of re
e
ting in the split phase the obje
tive of minimizing the global approximationerror, have been left for future work.
The split phaseImpa
t on segmentation qualityIt was shown previously that using a split phase in the aÆne RSST algorithm is a good wayof avoiding the over adjustment problems for small regions 
hara
teristi
 of the aÆne model.Figure 4.21 shows results of applying the new and 
at RSST algorithms with and without asplit phase to the �rst image of \Claire".The quality of the new and 
at RSST algorithms' results are not strongly a�e
ted by the splitphase. This fa
t may be 
on�rmed for a wide range of test images. The strongest negativeimpa
t of split in the appearan
e of arti�
ial shapes in false 
ontours, as 
an be seen in theba
kground of the 
at RSST result (the new RSST algorithm is more robust to false 
ontours).It is only the shapes of false 
ontours whi
h are a�e
ted by the split phase, not false 
ontoursthemselves, whi
h exist with or without it. However, it may be argued that, sin
e they are false
ontours anyway, their shape is not too relevant and they 
an be removed by post-pro
essing,as done in [194℄. Also, the use of more powerful models leads to less false 
ontours and hen
eto a less negative visual impa
t of the split phase. All in all, it may be said that, sin
e split haseither a positive or a slightly negative impa
t in segmentation quality, it will be amply justi�edif it leads to signi�
ant savings in either or both 
omputational time and memory requirements.
Impa
t on running timesThe exe
ution times of the new and 
at RSST algorithms is given in Table 4.2.14 The �rstthing to noti
e is that the new RSST algorithm is slower than the 
at RSST algorithm. This isdue to the fa
t that merges in new RSST are done a

ording to three di�erent 
riteria, whi
himply two di�erent orderings of the graph ar
s: one a

ording to the 
olor distan
e, anothera

ording to the size of the regions. On the 
ontrary, the 
at RSST (and the aÆne RSST, forthat matter) require only a single ordering of the graph ar
s. A similar 
omparison is performedin Table 4.4 between the 
at and aÆne RSST algorithms, though with a minimum blo
k size of2�2. Noti
ing that the segmentation algorithm in 
at and aÆne RSST is a
tually the same, theperforman
e di�eren
e is due essentially to the in
reased aÆne model 
omplexity, whi
h impliessolving a linear least squares problem for 
al
ulating the weight of the graph ar
s. Both tablesalso show the 
onsiderable speed gains when using a split phase, with the ex
eption of two 
ases:\Salesman" and \Table Tennis" for the 
at and aÆne RSST algorithms, in whi
h the added
omputational 
omplexity of the split phase outweighs the savings in the merge phase. This isprobably due to the fa
t that the implementation used 
al
ulates the region model parametersduring the split phase. Sin
e the split phase, as implemented, does not use the region model,these 
al
ulations would be better postponed to the end of the split phase. This was not done,14Results on a Pentium 200 MHz, with 64 Mbyte RAM, running RedHat Linux 5.0 (kernel 2.0.32), programs
ompiled with g

 2.8.1 and full 
ompiler optimization (-O3), times obtained with gprof 2.8.1.
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(a) New RSST without split. (b) New RSST with split.

(
) Flat RSST without split. (d) Flat RSST with split.
Figure 4.21: \Claire" image 0: segmentation into 25 regions.
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sequen
e no split split\Carphone" 29.52 8.56\Claire" 24.20 3.29\Flower Garden" 34.16 19.06\Foreman" 29.44 9.46\Miss Ameri
a" 25.81 3.88\Salesman" 29.11 12.45\Table Tennis" 35.71 11.99\Trevor" 27.71 5.42average 29.46 9.26(a) New RSST algorithm.

no split split13.83 6.3913.48 2.2522.64 13.2514.76 6.4013.70 3.9414.49 9.4115.34 12.7813.85 5.5715.26 7.50(b) Flat RSST al-gorithm.
Table 4.2: Exe
ution times (in se
onds) of 4.2(a) new RSST and 4.2(b) 
at RSST for CIFsequen
es (image 0).
though. Table 4.3 shows the exe
ution times of the aÆne RSST when applied to QCIF images,whi
h also 
on�rms the advantages of the split phase.It should be noti
ed, though, that the performan
e improvement due to the split phase maybe redu
ed if the merge phase is further optimized, and vi
e-versa. Hen
e, as both phases areoptimized, an eye should be kept on the global result so as to assess whether or not the splitphase is really advantageous.Finally, these results, and espe
ially the averages, should be taken with a grain of salt, sin
e,even though the test images used form an a

eptable sample for testing generi
 algorithms, theresults may be di�erent if other images are used.

Sequen
e no split split\Carphone" 31.05 17.73\Claire" 34.03 9.33\Foreman" 32.53 19.29\Grandmother" 31.70 17.19\Miss Ameri
a" 30.94 9.46\Mother and Daughter" 31.45 17.40\Salesman" 31.64 23.55\Table Tennis" 33.68 24.25\Trevor" 34.10 14.28average 32.35 16.94
Table 4.3: Exe
ution times (in se
onds) of aÆne RSST for QCIF sequen
es (image 0).
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sequen
e no split split\Carphone" 3.62 3.32\Claire" 3.33 1.23\Flower Garden" 4.93 3.73\Foreman" 3.81 3.29\Miss Ameri
a" 3.59 3.10\Salesman" 3.24 3.88\Table Tennis" 3.49 4.50\Trevor" 3.18 3.23average 3.65 3.29(a) Flat model.

no split split37.13 33.2834.32 13.1447.15 41.6937.25 34.7133.00 27.7134.07 37.3037.90 45.4840.29 32.1137.64 33.18(b) AÆne model.
Table 4.4: Exe
ution times (in se
onds) of 4.4(a) 
at RSST and 4.4(b) aÆne RSST for CIFsequen
es (image 0) using a minimum blo
k size of 2� 2.
4.5.4 Con
lusions
Three segmentation algorithms have been 
ompared: the new RSST [32, 33℄, the 
at RSST [194℄,and the aÆne RSST, whi
h is the same algorithm as in [194℄ extended so as to use an aÆneregion model. The last two algorithms have been tested also with optional image simpli�
ationpre-pro
essing and a split phase. The 
at RSST was shown to be more generi
 than the newRSST, even though it is less robust relative to false 
ontours. The 
at RSST was shown to berelatively insensitive, in terms of segmentation quality, to the use of image simpli�
ation, whi
his essential in the new RSST, and to the use of a split phase. The aÆne RSST has shown a greatpotential, even though some problems still need to be solved. In the 
ase of the aÆne RSST,the split phase was shown to have a positive impa
t on segmentation quality, sin
e it tends tominimize the negative e�e
ts of the over adjustment of the model for small regions. In termsof 
omputational requirements, the split phase was shown to provide 
onsiderable savings, evenif its implementation still requires optimization. The algorithms proposed in the next se
tions,whi
h deal with supervised segmentation and 
oheren
e of temporal segmentation, make use ofthe 
at RSST with a split phase and no image simpli�
ation.
4.6 Supervised segmentation
4.6.1 RSST extension using seeds
The global approximation error minimizing RSST algorithms, either using the 
at or the aÆneregion models, may be stopped either when the error ex
eeds a 
ertain threshold, or when arequired number of regions has been attained. These algorithms provide no means for 
on-trolling the position of the resulting regions or for spe
ifying seeds around whi
h the regions of
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interest should be obtained, as happens in region growing algorithms (su
h as watersheds [105℄).However, they 
an be easily extended with su
h features, as mentioned previously, and as �rstproposed in [119℄.Consider a label image with the same size as the original image. Let label zero denote unseededpixels and seed s, with s 6= 0, be the set of all pixels with label s (whi
h may or may not be
onne
ted). The set of existing seeds plus the set of unseeded pixels 
an be seen as a partitionof the image. The label images may be restri
ted to those having 
onne
ted seeds, but this isnot ne
essary. The RSST algorithms 
an be extended su
h that an initial labeling is taken intoa

ount during segmentation. During the split phase (if there is one) the regions are for
edto be split if they 
ontain pixels belonging to di�erent seeds. During the merge phase, whensear
hing for the next two adja
ent regions to merge, one may simply say that regions withpixels of di�erent seeds should be merged last, if ever, or that regions with the same seed shouldbe merged �rst. Further, whenever an unseeded region is being merged with a seeded region,the resulting region will inherit the seed of the seeded one. If adja
ent regions with di�erentseeds are prevented from being merged, the �nal partition respe
ts the seeds, in the sense thatall regions 
ontain at most pixels of one seed.O

asionally, however, it may be a

eptable to merge regions with di�erent seeds. If thishappens, the resulting region may inherit either the highest (or lowest) label or the label of thelargest region, for instan
e.
4.6.2 ResultsFigures 4.22(b) and 4.22(
) show the result of segmenting the �rst image of the \Grandmother"sequen
e with the 
at RSST algorithm and targeting at six �nal regions. Figures 4.22(d)and 4.22(e) show the result of segmenting the same image though with the seeded 
at RSSTalgorithm, and resorting to the set of seed pixels represented by 
rosses in Figure 4.22(a). Sixdi�erent seeds were used: ba
kground, plant, sofa, hair, fa
e and body. The pixel seeds on thehair belong all the the hair seed, the same thing happening with the 
rosses on the fa
e and theba
kground. The seed lo
ations were 
hosen in an empiri
al way, until the desired result wasattained.
4.6.3 Con
lusionsIt is obvious, from the example in Figure 4.22, that, by simple mouse 
li
ks, a human 
ansupervise the segmentation algorithms of the previous se
tions to improve the results, i.e., byimposing semanti
al meaning. In a way, thus, a se
ond-generation, mid-level vision tool isbeing helped to attain high-level vision results. It may be argued that unsupervised third-generation algorithms may also be attained by developing new segmentation algorithms whi
hin
orporate semanti
al information from the very start. However, it may be more natural to relyon algorithms of the lowest levels and to �nd good automati
 supervision algorithms, sin
e thismakes the problem mu
h more amenable. This was already re
ognized, in a way, by Pavlidisin [154, p.91℄, whi
h 
alled supervision \interpretation guided editing."
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(a) Original image with pixel seedsrepresented by 
rosses.

(b) Without using seeds. (
) Without using seeds, over the orig-inal.

(d) Using seeds. (e) Using seeds, over the original.
Figure 4.22: Segmentation of \Grandmother" image 0 with the 
at RSST algorithm (using asplit phase with ts = 12) targeting at six �nal regions and with the same algorithm equippedwith six di�erent seeds: ba
kground, plant, sofa, hair, fa
e, and body.
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The simple extension of the RSST algorithms proposed here 
an also be used, as will be seen inthe next se
tion, to e�e
tively segment a set of images in an image sequen
e in a time re
ursivefashion, and so as to maintain 
oheren
e between the segmentation results along time.
4.7 Time-
oherent analysis
In the framework of moving image analysis, viz. for image 
oding, the time 
oheren
e ofsegmentation is important for at least two reasons. The �rst one has to do with manipula-tion/intera
tivity: when the user/spe
tator of the information is allowed to intera
t with thes
ene, it must be possible for him to sele
t, zoom, rotate, or 
hange any s
ene obje
ts. Thisimplies that obje
ts must be identi�ed, and this identi�
ation must be 
oherent along ea
h ofthe images of the sequen
e in whi
h the obje
ts o

ur. Hen
e, if the user de
ides to 
hangethe 
olor of a given 
ar whi
h he sele
ts in a parti
ular image of the moving s
ene, that 
ar's
olor must be 
hanged along the whole set of images in the sequen
e. The se
ond reason has todo with 
oding eÆ
ien
y: segmentation 
oheren
e is important be
ause it allows for improvedtime predi
tion tools to be used.This se
tion extends the RSST segmentation algorithms so as to deal with moving images.This extension makes use of the extension of the RSST algorithms using seeds to perform atime-re
ursive segmentation. Time re
ursion is introdu
ed by using the previously segmentedregions as seeds for the segmentation of groups of images, su
h that the previous segmentationresults are proje
ted into the 
urrent image. Proje
tion of segmentation results is not a newidea, having been proposed in [105℄ and in its pre
ursor [154, p.92℄ whi
h states that \... inmoving s
enes where the segmentation of a previous frame may be used as an initializationfor the 
urrent frame." However, its use in 
onjun
tion with the RSST algorithms is, to theknowledge of the author, original, and was �rst proposed in [119℄.
4.7.1 Extension of RSST to moving imagesThe extension of the RSST algorithms to moving images is simple: sta
k the su

essive 2Dimages of a sequen
e into a 3D image, 
onsider the 3D 6-neighborhood, and leave the rest of thealgorithms un
hanged. If the image sequen
e grid is re
tangular, this is its natural extensioninto three dimensions, assuming, of 
ourse, a progressive sequen
e format. Of 
ourse, the splitphase, if there is one, now pro
eeds a

ording to an o
tal pi
ture tree, instead of a QPT. Also,it is now less than 
lear whether the aÆne region model (for 3D) should be used, and what itsmeaning is. The 
at model 
an and will be used without 
hange, though.
RequirementsWhen segmentation of long sequen
es of 2D images is the aim, simply segmenting the 3Dimages obtained by sta
king a few 2D images at a time may 
ause problems. The �rst problemis that the aim is to obtain a sequen
e of 2D partitions. For instan
e, a perfe
tly a

eptable
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3D partition with 
onne
ted regions may lead to some 2D partitions 
ontaining dis
onne
tedregions.15 Also, if an obje
t has undergone a large movement from one image to the next, it willresult in two obje
ts in 3D segmentation. It should, however, result in a single obje
t whoselo
ation in two su

essive images does not overlap.Another problem has to do with the number of images that should be sta
ked before performing3D segmentation. Clearly, the ideal would be to sta
k as many images as possible. However,this 
an easily result in both an overwhelming amount of data to pro
ess (segmentation 
an bevery memory demanding) and una

eptable delays when segmentation is to be performed inreal time, be
ause segmentation 
annot pro
eed until all images are available. Also, no matterhow many images one sta
ks before 3D segmentation, there will always 
ome a time when thenext sta
k of images will have to be pro
essed. The 
oheren
e between the previous and thenext partitions of sta
ks of images will then be lost, unless other measures are taken.Con
luding, 3D segmentation algorithms should be able to tra
k regions along time, shouldnot demand too mu
h 
omputational power, and should introdu
e small delays for real-timeappli
ations.
Time re
ursivenessA solution for the problem of maintaining temporal 
oheren
e in segmentation is des
ribedin [105℄, even though the idea is 
learly a variation of the one exposed in [154, p.92℄. The ideais to perform 3D segmentation on sta
ks of images that overlap along time, and use partitionsobtained in the past segmentations as seeds for the present segmentation, thus introdu
ing timere
ursiveness. The minimum 
on�guration providing time re
ursiveness thus 
onsists of sta
ksof two images, maintaining a time overlap of a single image. Sin
e the RSST segmentationalgorithms tend to 
onsume a large amount of memory, the use of pairs of images is amplyjusti�ed by implementation 
onsiderations.When the past partitions are grown into the present through 3D segmentation, a 
onne
ted3D region in the obtained partition may turn to be dis
onne
ted if restri
ted to a smaller timerange. For instan
e, in the pairwise 3D segmentation s
heme suggested above, the 2D partition
orresponding to the present image in a just segmented pair of images may have dis
onne
tedregions. This problem is solved easily if,16 after the 3D segmentation involving all the images inthe sta
k, the segmentation pro
eeds using only the present images. Before that, however, theregions whi
h were split into more than one 
onne
ted 
omponent will be unseeded, with theex
eption of one of its 
onne
ted 
omponents. Usually the largest 
onne
ted 
omponent retainsthe label of the originating seed in the past. This simple solution thus may 
reate regions withnew labels.Using time re
ursiveness, some regions may not grow into the present, and hen
e regions, andthe 
orresponding seed labels, may disappear when no 
orresponden
e is found from the past15However, in some 
ases this may a
tually be desirable. For instan
e, when the 2D proje
tion of an obje
t issplit into two disjoint regions by another obje
t 
loser to the observer. In this 
ase it is arguable that the twodisjoint regions are one and the same obje
t.16Again, this is only a problem if the 
lasses in the partitions are required to be 
onne
ted, whi
h is often the
ase.
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to the present. Further, some regions in the present may not 
orrespond to any region in thepast, and hen
e new labels may also appear this way.The problem with time re
ursiveness using the des
ribed methods is that the number of regionstends to grow. This is 
aused be
ause of illumination e�e
ts whi
h often 
reate new (arti�
ial)regions, no matter how 
omplex the region models are, and be
ause regions seldom disappear,even when a stopping 
riterion based on the global approximation error is used. Hen
e, it isdesirable to 
omplement the segmentation steps explained above with a further step in whi
hthe segmentation no longer respe
ts the seeds, some di�erently labeled regions being allowed tomerge.
CodingThough this 
hapter does not address dire
tly the partition 
oding problem, it should be notedthat information about the relation between the 
urrent and the past 
lass labels should besent along with the 
lass shape information. This information may, for instan
e, state whi
h
lasses in the past images 
eased to exist, whi
h new 
lasses were 
reated, and whi
h 
lasseswere split or merged. The relation between 
urrent and past 
lass labels may also be of helpfor the en
oding of 
ontours, of 
olor (the inside of the regions), and even of motion.
4.7.2 ResultsFigure 4.23 shows the results of segmenting the �rst image of the QCIF \Table Tennis" sequen
eusing the 
at RSST algorithm with a split step in whi
h ts = 12. The target root mean square
olor distan
e used was 22 (
orresponding to a PSNR of 21.3 dB). A low PSNR target was
hosen in order to obtain a �nal number of regions whi
h would be meaningful on printedpaper. The simple 
at region model used a

ounts for the false 
ontours in the ba
kground andalso for the division of the sleeve into regions of di�erent shading.The time 
oheren
e of the TR-RSST segmentation algorithm 
an be seen in Figure 4.24, whi
hshows the time evolution of ten 
lasses of the segmented sequen
e 
orresponding to the arm,hand, and ra
ket of the player. These ten 
lasses 
orrespond to only nine labels, sin
e label ten(gray), used initially for the border of the ra
ket, is later reused in the lower part of the arm.The algorithm introdu
es new regions when the approximation error is not good enough, as 
anbe seen in the lower part of the arm from the eighth image on.
4.7.3 Con
lusionsThis se
tion des
ribed an extension of the 
at RSST algorithm whi
h deals with sequen
es ofimages while maintaining 
oheren
e of the obtained partitions from image to image. The resultsobtained are reasonable and show that the method is interesting for use in se
ond-generationvideo 
ode
s.
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Figure 4.23: Segmentation of QCIF \Table Tennis" image 0 using 
at RSST.
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Figure 4.24: Segmentation of images 0 to 9 of QCIF \Table Tennis" with the TR-RSST algo-rithm. Ten 
lasses are shown in di�erent 
olors: hand (three 
lasses, brown, dark blue, anddark green), ra
ket (one and two 
lasses, bla
k and gray), sweater 
u� (one 
lass, violet), sleeveand shoulder (three and four 
lasses, light blue, light green, red, and gray).



Chapter 5
Time analysis

Todo o Mundo �e 
omposto de mudan�
a,Tomando sempre novas qualidades.Lu��s Vaz de Cam~oes
There is a 
onsiderable interdependen
e between motion estimation and segmentation, i.e., be-tween time and spa
e analysis of moving images. Estimation of motion, even at pixel level,requires regularization, sin
e otherwise the results will not be likely to 
orrespond to the 2Dproje
tion of real 3D motion (due to the aperture problem [70℄). On the other hand, if reg-ularization is impli
it in some motion model (with some physi
al meaning), then that motionmodel must be applied to individual regions: it is extremely unlikely that a single set of modelparameters 
an des
ribe the motion of all the pixels in a moving image: the real world s
enesusually 
onsist of rigid or semi-rigid obje
ts with independent motion. Hen
e, segmentation intozones with di�erent motions must be performed. The question that remains is whi
h shouldbe performed �rst: motion estimation (i.e., estimation of the model parameters) or segmenta-tion? The obvious response seems to be to perform both simultaneously, but that is not aneasy task. This was the issue of dis
ussions in the MotSeg (Motion Segmentation) group of theMAVT (Mobile Audio-Visual Terminal) proje
t (
haired by the author), see [135, 115℄. It willnot be further dis
ussed here.Camera movement introdu
es global motion, that is, motion whi
h is independent (or nearlyso) of the 
ontents of the s
ene. Nevertheless, this motion may be superimposed into motion ofthe obje
ts in the s
ene, so that segmentation is an important issue even in 
amera movementestimation. This 
hapter presents the 
amera movement estimation algorithm �rst publishedin [122℄ and also proposes an improvement based on the Hough transform whi
h is similar to theone proposed in [4℄. The improvement stems from the segmentation part of the algorithm, whi
his based on a Hough transform 
lustering segmentation te
hnique, even if, in the sequel, it isinterpreted, more in the light of robust estimation methods, as an outlier dete
tion me
hanism.Note that 
lustering segmentation te
hniques whi
h make no use of topologi
al restri
tions, su
h183
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as 
onne
tedness of the attained 
lasses, do make sense in the framework of 
amera movementestimation, sin
e these movements introdu
e global motion whi
h is independent of the s
ene
ontents. The zone in the image whose motion 
orresponds to 
amera movement is that inwhi
h the s
ene is stati
 from one image to the next. Modeling the shape or 
onne
tedness ofthis zone would probably not lead to improved 
amera movement estimation.The proposed 
amera movement estimation algorithms deal with two types of movement: pan(whi
h also en
ompasses tilt) and zoom. These algorithms, and espe
ially the one based on theHough transform, 
an be used for both 
ompensation of 
amera movements, in the frameworkof video 
oding, or for image stabilization in the 
ase of vibration or small pan movements origi-nated in hand-held video 
ameras, for instan
e in mobile videotelephony. Both 
an be 
lassi�edas transition to se
ond-generation tools, sin
e they make use of more stru
tured informationextra
ted from the image sequen
e. The �rst tool, 
amera movement 
ompensation, will bedealt with in the next 
hapter, and the se
ond one, image stabilization, in Se
tion 5.5.The algorithm based on the Hough transform is a natural evolution of the one in [122℄, whi
hin turn stemmed from earlier work by the author [129, 127, 130, 128, 113℄. It 
an also be seenas a simpler version of the algorithm in [4℄.
5.1 Camera movements
Two types of 
amera movement will be 
onsidered: panning and zooming. Panning 
orrespondsto the usual movement used to 
apture a panorami
 view. In this se
tion, however, it will betaken to mean any rotation of the 
amera about an axis parallel to the image proje
tion plan,so that it in
ludes pan and tilt as parti
ular 
ases. Rotations of the 
amera around the lensaxis will not be 
onsidered. In a pure pan movement, the axis of rotation is taken to passthrough the opti
al 
enter of the 
amera obje
tive.1 The e�e
t of a pure pan is approximatelya translation of the proje
ted image. The deviations from a true translation are due to severalfa
tors, of whi
h the most important are that the in fo
us plan 
hanges (obje
ts whi
h were info
us are now out of fo
us and vi
e versa) and that the perspe
tive of the proje
ted image also
hanges (formerly parallel proje
ted lines are now 
onvergent and vi
e versa). The �rst e�e
tmay be redu
ed by redu
ing the obje
tive aperture, whi
h results in a larger depth of �eld, i.e.,it in
reases the maximum distan
e to the in fo
us plan where obje
ts have an apparently sharpimage in the proje
tion plan by redu
ing the area of the 
orresponding 
ir
les of 
onfusion. Theapproximation to a true translation, however, is good provided the rotation performed by thepan movement is small. Noti
e that, if two pan movements in obje
tives with di�erent fo
allengths (or the same zoom lens at two di�erent fo
al lengths) result in translations of the imagewith the same magnitude, the approximation to a pure translation is better for the larger fo
allength. This happens be
ause the 
orresponding 
amera rotation is smaller.Zooming 
orresponds to the 
ontinuous 
hange of the fo
al length of the 
amera while keepingthe originally fo
used plane in fo
us, i.e., with a sharp image in the proje
tion plan. In a purezoom movement, the opti
al 
enter of the lenses does not 
hange its position. Even if the opti
al1 A
tually, the axis of rotation is taken to pass through the prin
ipal point of the lens system 
loser to theobje
t.
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enter does 
hange, it is usually by a very small distan
e, espe
ially when 
ompared with thedistan
e between the 
amera and the viewed obje
ts. Zooming 
orresponds thus approximatelyto a proportional s
aling, an isometri
 transformation of the proje
ted image. If the zoom isnot pure, then this is only partially true, sin
e the 
hange in the position of the opti
al 
enterof the lens introdu
es perspe
tive 
hanges in the proje
ted image, whi
h 
annot be des
ribedby a simple s
aling. For the same aperture (or pupil), a 
hange in the fo
al length whi
h isa

ompanied by a 
orresponding 
hange in the proje
tion plan position so as to keep the in fo
usplane un
hanged, results in a 
hange of the blurriness (i.e., the area of the 
ir
le of 
onfusion
orresponding to a given point) by approximately the same fa
tor as the proje
ted sizes, andhen
e seems to 
orroborate that zooming 
orresponds to a simple s
aling of the image. But,sin
e in
reasing the fo
al length usually also implies augmenting the obje
tive aperture, the
ir
les of 
onfusion are enlarged more that the image itself (i.e., the depth of �eld is redu
ed).It will be assumed in this 
hapter that a re
tangular sampling latti
e is used to sample themoving images, and that the spatial a
tive area of this latti
e (
orresponding to the domain ofthe digital image) is 
entered around the lens axis. Thus, zooming 
orresponds to an isometri
s
aling around the 
enter of the a
tive area. This assumption, however, is not fundamental: ifthe 
enter is not on the lens axis, a �
titious pan movement will be estimated along with thezoom to 
ompensate for the o�set. This must be taken into a

ount when analyzing the results,though.The degree to whi
h a pan or zoom movement results in approximate translations and s
alingsof the proje
ted image is beyond the s
ope of this thesis. The reader is referred to any goodtextbook on opti
s dealing with lens systems, the usual opti
al aberrations, and 
amera te
hnol-ogy (a simpli�ed treatment 
an be found in [102℄). However, it may be said that the non-lineare�e
ts of panning and zooming are small for small movements. Also, sin
e these movementswill be estimated (using the algorithms des
ribed in this 
hapter) from one image to the next inan image sequen
e, they 
orrespond to fra
tions of movement lasting typi
ally from 160 to 125 ofa se
ond. These intervals are generally short enough (or the 
amera operators slow enough) forthe fra
tional movements to be small from image to image. However, these e�e
ts do be
omemore evident when integrating the in
remental movements over an entire sequen
e. Again, theywill be negle
ted in this thesis, ex
ept as a (partial) justi�
ation for the 
umulative errors ofthe estimated movement fa
tors along a sequen
e.Panning movements have an immediate equivalent in the HVS: 
hanges of gaze dire
tion througheye or, to a 
ertain extent, head movements. Our eyes, unfortunately, have no zooming 
apabil-ities. The equivalent of zooming is performed by the upper levels of the HVS, by 
on
entratingmore or less the attention to the part of the image near the fovea. In the 
ase of the HVSseveral position and attitude feedba
k me
hanisms (from the eye and ne
k position, and fromthe equilibrium sensors in the inner ear) simplify the brain's task while performing a mat
h be-tween su

essive images.2 The role of 
amera movement estimation then is to perform a similarfun
tion in the absen
e of position feedba
k. It should be noti
ed that zoom movements, beingrelated dire
tly to lens positions, might be sensed, quantized, digitized and stored or fed ba
kfor ea
h image with little 
ost, thus rendering estimation useless. As to pan movements, the2Images in the retina are formed in a 
ontinuous way, of 
ourse, but the 
hanges in gaze dire
tion are performedthrough sa

adi
 eye movements, whi
h render 
hanges almost dis
rete. Besides, there is eviden
e that the visualfun
tion is e�e
tively suppressed during these sa

adi
 movements.
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same pro
ess might be done, though the sensing devi
es would probably be 
ostlier. In pra
ti
e,none of these movements is 
aptured along with the images, and hen
e has to be estimated.
5.1.1 Transformations on the digital imageImage and pixel 
oordinatesThe notation de�ned in Se
tions 3.2.2 and 3.2.3 will be slightly extended. As before, s usually
orresponds to a latti
e site (i.e., a 
oordinate in the image plan), addressed by the digital imagepixel v. That is, s = �u0 : : : um�1� v:This equation may be simpli�ed by spe
ifying a re
tangular sampling latti
e in R 2 (i.e., m = 2,u0 = �0 �b�T , and u1 = �a 0�T ) s = � 0 a�b 0� v:Using the usual notation for the 
oordinates of latti
e sites and pixelss = �xy� = � 0 a�b 0� v = � 0 a�b 0� �ij� :However, the real sizes of a and b (as well as the relation between image size and real size ofthe imaged obje
ts), are immaterial for the purposes of 
ompensation of 
amera movement orimage stabilization. Hen
e, the 
oordinates of the sampling latti
e sites will be expressed inpixel width units, whatever they are, i.e.,s = � 0 1�b=a 0� v = � 0 1� 1� 0� v;where � is the pixel aspe
t ratio 
orresponding to the sampling latti
e used.The domain of digital images sampled with a re
tangular latti
e is usually taken to 
onsist ofL lines of C pixels, where line 0 is the topmost line (and line L � 1 is the bottommost), and
olumn 0 is the leftmost 
olumn. In this 
ase it will be useful to 
enter the 
orresponding latti
esites around the origin, whi
h is taken to be the point where the lens axis interse
ts the imageplan. Hen
e, the previous equation is 
hanged to 
ompensate for this o�sets = � 0 1� 1� 0��v � �L�12C�12 �� = � 0 1� 1� 0� �i� L�12j � C�12 � ;or x = j � C � 12 , andy = � 1� �i� L� 12 � : (5.1)
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Expressing the pixel 
oordinates v in terms of the image 
oordinates s, the following equationresults v = �0 ��1 0 � s+ �L�12C�12 � ;or i = ��y + L� 12 , andj = x+ C � 12 : (5.2)
A

ording to the notation introdu
ed in Se
tion 3.2.3, in equations (5.1) and (5.2) s = �x y�Tshould be taken to belong to R 2 and v = �i j�T to Z = f0; : : : ; L�1g�f0; : : : ; C�1g � Z2 . Bya slight abuse of notation, however, v will be taken to belong to R = [0; L�1℄� [0; C�1℄ � R 2 ,in whi
h 
ase they 
an be thought of as representing sites in the analog image expressed inthe usual pixel 
oordinates. Hen
e, s 
oordinates are image 
entered, oriented as usual (x-axisrightwards and y-axis upwards), and isotropi
 (in the sense that they express real distan
es, insome unit, in both dire
tions), while v 
oordinates have origin in the 
enter of the top-leftmostpixel, the �rst 
oordinate growing downwards and the se
ond rightwards, and are generally notisotropi
, sin
e the pixel aspe
t ratio is not taken into a

ount. These last 
oordinates however,translate ni
ely into pixels.
Pan and zoom movementsPan movementA pan movement, as seen, 
orresponds to a translation of the image. Let ds = �dsx dsy�T be thetranslation ve
tor 
orresponding to the pan movement. Then, a site s = �x y�T will be takeninto s0 = s� ds = �x� dsxy � dsy�after the pan movement. Noti
e the sign of the translation ve
tor: its dire
tion re
e
ts the
amera movement, sin
e a rotation of the 
amera to the right will translate the image to theleft.3
Zoom movementA zoom movement, as seen, 
orresponds to a s
aling of the image about the lens axis. LetZ > 0 2 R be the s
aling fa
tor 
orresponding to the zoom movement. Then, a site s = �x y�T3Of 
ourse, this is only true after reversing the dire
tions in the image, sin
e the lens proje
ts an invertedimage.
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will be taken into

s0 = Zs = �ZxZy�after the zoom movement, where Z > 1 means zoom in, Z < 1 means zoom out, and Z = 1means no zoom.
Combined pan and zoom movementsIf a s
aling is performed before a translation, the result is reprodu
ible by performing an ap-propriately s
aled translation before the s
aling. Hen
e, it is immaterial whi
h of the pan andzoom movements is performed �rst (if they are not performed simultaneously). But the 
ameramovement estimation equations will be rendered simpler if a 
ombined movement is modeled asa s
aling after a translation. Hen
e, after a translation by ds and a s
aling by Z, site s = �x y�Twill be taken into

s0 = Z(s� ds) = �Z(x� dsx)Z(y � dsy)� : (5.3)
If the opposite question is asked, viz. where did s0 
ame from, the following equation results

s = s0Z + ds = "x0Z + dsxy0Z + dsy# :
The ve
tor whi
h takes from s0 to s is given by

s� s0 = s0Z � s0 + ds = ( 1Z � 1)s0 + ds = zs0 + ds = �zx0 + dsxzy0 + dsy� ;where z = 1=Z � 1 will be known hen
eforth as the zoom fa
tor.Converting this equation to pixel 
oordinates
M(z; d)[i; j℄ = v � v0 = �0 ��1 0 � (s� s0) = �0 ��1 0 � (zs0 + ds)

= z�v0 � �L�12C�12 ��+ d = � z �i� L�12 �+ diz �j � C�12 �+ dj� ; (5.4)
where d = �di dj�T is the translation ve
tor expressed in pixel 
oordinates. The quantityM(z; d)[i; j℄ is usually known as the ba
kward motion ve
tor at v0 = �i j�T 
orresponding tothe 
amera movement fa
tors z and d, sin
e, if the 
amera movement o

urred from image n�1to image n in a sequen
e, �i j�T +M(z; d)[i; j℄ tells where pixel �i j�T (of image n) was onimage n� 1.
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Division of the image into blo
ksLet L = BLLb and C = BCCb, i.e., the digital images 
an be divided into BL � BC blo
ks ofLb � Cb pixels ea
h. Let bmn be the blo
k at the mth line of blo
ks (topmost is 0) and at thenth 
olumn of blo
ks (leftmost is 0). Ea
h blo
k 
an be seen as a small image. The pixel at
oordinates �i j�T of blo
k bmn has pixel 
oordinates�mLb + inCb + j�in the overall image, as 
an be readily veri�ed. Hen
e, its 
orresponding 
amera movementmotion ve
tor isM(z; d)[m;n; i; j℄ =M(z; d)[mLb + i; nCb + j℄ = �z �mLb + i� L�12 �+ diz �nCb + j � C�12 �+ dj� ;from whi
h the average 
amera movement motion ve
tor of blo
k bmn 
an be 
al
ulated as

Mb(z; d)[m;n℄ = 1LbCb Lb�1Xi=0 Cb�1Xj=0 M(z; d)[m;n; i; j℄ = 2664z
�m� BL�12 �Lb + diz �n� BC�12 �Cb + dj

3775 : (5.5)
5.2 Blo
k mat
hing estimation
Motion 
ompensation was a breakthrough te
hnology in video 
oding. It relies on two generalfa
ts: the proje
ted s
ene tends to 
hange little from image to image, and hen
e the previousimage may be a good predi
tion for the 
urrent one, and 
hanges are mostly due to 
ameramovements and/or motion of the imaged obje
ts. Both types of movements 
an be estimated,and the estimated motion, or the estimated motion model parameters 
an be used to improvethe predi
tion of the 
urrent image given the previous one. Hen
e, motion estimation is ofparamount importan
e to video 
oding. Despite the fa
t that numerous algorithms have beenproposed for motion estimation in the literature [5, 190, 169℄, the blo
k mat
hing algorithm,and its variants, is still the most used and the one for whi
h hardware implementations aremore readily available.The rationale for blo
k mat
hing is simple. Motion 
annot be estimated in a purely lo
al fashion:if the 
losest mat
h to a pixel is sear
hed in the previous image, the attained motion ve
tor�eld, that is, the set of motion ve
tors obtained for all pixels, is extremely nonuniform, evenif restri
tions in the sear
h range are introdu
ed. This is undesirable for two reasons. Firstly,if motion analysis aimed at s
ene understanding, a highly nonuniform motion ve
tor �eld isunlikely to 
orrespond to the proje
tion of the real 3D motion in the s
ene: real motion tendsto be reasonably uniform. The physi
al world is mostly 
onstituted of semi-rigid obje
ts, andthus the usual motion models used assume that the motion ve
tor �eld has few dis
ontinuities,whi
h typi
ally o

ur at the boundaries of the imaged obje
ts. This is related to the fa
t thatestimating a motion ve
tor �eld from a pair of images (i.e., 
omputing the so-
alled opti
al 
ow)
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is an ill-posedness problem [9℄, and hen
e some type of regularization must be used, typi
allythrough the use of additional 
onstraints for
ing the motion ve
tor �eld to be uniform almosteverywhere. Se
ondly, if motion is to be used for en
oding, then the savings obtained through abetter predi
tion should not be smaller than the 
ost of en
oding the motion ve
tor �eld. Thislast reason, together with engineering 
on
erns about the pra
ti
ality of its implementation inreal 
ode
s, led to a 
ompromise. In the now 
lassi
al video 
ode
s, motion is estimated at amu
h lower resolution than the image resolution: motion ve
tors are estimated for ea
h Lb�Cbblo
k of pixels, where Lb and Cb divide respe
tively L and C (the digital image size), as in theprevious se
tion. Typi
al values for the blo
k sizes are 8� 8 and 16� 16.The estimate ~Mb[m;n℄ of the motion ve
tor of blo
k b[m;n℄ of image fn relative to image fn�1is 
al
ulated by minimizing some measurement of the predi
tion error su
h as (see [143℄)

E[m;n℄(Mb[m;n℄) = Xv2b[m;n℄D(fn[v℄; fn�1[v +Mb[m;n℄℄); (5.6)
where D is some distan
e on the 
olor spa
e, and where the minimization is performed overa restri
ted set of possible values for the motion ve
tor. The motion ve
tor is usually allowedonly to take values on a small re
tangular window 
entered on the null (no motion) ve
tor,e.g., Mb[m;n℄ 2 f�dimax ; : : : ; dimaxg � f�djmax ; : : : ; djmaxg, whi
h restri
ts the range of imagemotion with whi
h the algorithm 
an 
ope. This window is usually further redu
ed at the imageborders so that the referen
e blo
k stays within the previous image, though methods have beenproposed whi
h prefer to extrapolate the previous image out of its borders. The values used fordimax and djmax in this 
hapter are 32 and 30, whi
h are a good 
ompromise between the rangeof a

eptable image motion and implementation eÆ
ien
y, at least for full sear
h algorithms(see below) over CIF images. The values also happily 
ompensate the pixel aspe
t rate of theimage sequen
es used, see Se
tion A.1.1.Regularization in this 
ase is impli
it, sin
e all pixels of a blo
k are assumed to share a singlemotion ve
tor. In a sense, thus, the motion ve
tor �eld is only allowed to have dis
ontinuitiesat the blo
k boundaries, whi
h are rather unlikely to 
oin
ide with real obje
t boundaries.However, when a blo
k 
ontains (parts of) obje
ts with di�erent motions or 
ontains un
overedparts of obje
ts, the minimum predi
tion error attained is likely to be large, and hen
e 
anbe used as a rough indi
ation of the validity of the motion ve
tor. Sequen
es with pure panand/or zoom 
amera movements do not su�er from these problems (ex
ept possibly at un
overedborders), but are extremely rare in pra
ti
e (and uninteresting).If the motion ve
torsMb[m;n℄ in (5.6) are allowed to take values in R 2 instead of in Z2 , thenmotion estimation is said to have sub-pixel a

ura
y. Su
h estimations are rendered amenableto implementation by restri
ting the values of the motion ve
tors to submultiples of the pixel,typi
ally to half or quarter pixels. In any 
ase, methods must be devised to interpolate imagefn�1 at su
h inter-pixel positions, whi
h 
an be done by standard linear �ltering methods(see [150℄) or simply by using bilinear interpolation.
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5.2.1 Error metri
sThe 
olor spa
e metri
s used in pra
ti
e for motion estimation simply negle
ts the 
hromati
information in the image, relying thus only on the luma of the image. This approa
h is sound,in pra
ti
e, be
ause images are usually available with 
onsiderable blurred 
hromati
 
ontent.In most 
ases, the 
hromati
 
omponents are even subsampled relative to luma.The usual Eu
lidean distan
e is not used in pra
ti
e, be
ause it requires multipli
ation, renderingits implementation more 
ostly, and be
ause the 
ity blo
k distan
e, i.e., the sum of absolutevalues, besides 
onsiderably simpler, in pra
ti
e yields almost equivalent results [143℄.
5.2.2 AlgorithmsSeveral algorithms have been proposed to �nd the motion ve
tor yielding the minimum pre-di
tion error. The rationale for not using an exhaustive sear
h (or full sear
h) was the heavy
omputational requirements. Su
h algorithms sear
h only an appropriately sele
ted number ofmotion ve
tors, at the 
ost attaining non-optimal estimations, and are des
ribed in standardtexts on image 
ompression, e.g., [143℄.The use of the full sear
h algorithm has the advantage of, at the 
ost of some extra memory,being able to store the predi
tion errors of all possible motion ve
tors of a blo
k (instead ofjust a small subset), whi
h may be useful for motion ve
tor �eld smoothing or for estimatingthe 
ovarian
e matrix of the motion ve
tor, as will be seen in the sequel. Noti
e, however,that the 
al
ulation of predi
tion errors for all tested motion ve
tors is in
ompatible with astandard a

eleration method for blo
k mat
hing algorithms, whi
h, for ea
h motion ve
tor,s
ans the blo
k line by line and, at the end of ea
h line, 
he
ks whether the sum ex
eeds the
urrent minimum predi
tion error. If it does, then the 
urrent motion ve
tor 
annot possiblyyield a lower predi
tion error, the sum is stopped, and the error is not fully 
al
ulated. Thismethod, usually named short-
ir
uited estimation, yields 
onsiderable savings in 
omputationalrequirements.Finally, it should be mentioned that while minimizing (5.6), when more than one motion ve
torleads to the same minimum predi
tion error, the smallest motion ve
tor is preferred in thealgorithms proposed in this 
hapter. Other 
hoi
es, su
h as the motion ve
tor 
loser to somealready estimated neighbor, may help introdu
e more regularity in the motion ve
tor �eld.
5.3 Estimating 
amera movement
Motion estimation, of whi
h 
amera movement estimation 
an be seen as a parti
ular 
ase, reliesheavily on robust estimation methods, that is, methods that remain reliable in the presen
e ofseveral types of noise. Good reviews of su
h methods, as applied to 
omputer vision in generaland motion estimation in parti
ular, 
an be found in [111, 57℄.The basi
 requirement imposed to the 
amera movement estimator algorithms developed was
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that they should be robust in the presen
e of outliers, whose dete
tion will be seen in Se
-tion 5.3.2. For reasons having to do with tradition and ease of 
omputation [111℄, the moreoften used estimation method is least squares, whi
h is a type of M-estimator. However, thismethod is not robust: it has a breakdown point of 0, meaning that a single outlier may for
ethe estimates outside an arbitrary range [111℄.Even though the algorithms proposed here are based on the least squares estimator, robustness ispursued in di�erent ways: the �rst algorithm relies on iterative Case Deletion [57℄ to su

essivelyremove data points (motion ve
tors) deemed to 
orrespond to outliers, while the se
ond relieson the Hough transform to perform a 
lustering of the data points. This 
lustering 
an beseen either as a simple form of segmentation or as method for removal of outliers. This lastmethod is essentially a simpli�
ation of the method proposed �rst in [4℄.4 However, the proposedalgorithms in
lude an intermediate motion ve
tor smoothing step in the iterations whi
h redu
esthe number of outliers that stem from the aperture problem, thus improving the estimates byin
reasing the number of motion ve
tors on whi
h the least squares 
amera movement estimationis based.The algorithms proposed here for estimating 
amera movement were designed so that theywould be easily implementable. As su
h, they rely on blo
k mat
hing to obtain an initial, lowresolution, sparse motion ve
tor �eld, whi
h is then used to estimate the 
amera movementfa
tors z and d. Camera motion is thus estimated from an estimated motion ve
tor �eld. Thisis similar to the methods of motion estimation and segmentation whi
h rely on the opti
al
ow [4℄, though in this 
ase the motion ve
tor �eld is very sparse.
5.3.1 Least squares estimation
If the estimated blo
k motion ve
tors ~Mb[m;n℄ are assumed to have an independent 2D Gaus-sian distribution around the motion ve
tors Mb[m;n℄(z; d) given by the model of (5.5), with
ovarian
e matrix C[m;n℄, then the maximum likelihood estimated values of the 
amera move-ment fa
tors minimizeBL�1Xm=0 BC�1Xn=0 ( ~Mb[m;n℄�Mb[m;n℄(z; d))TC�1[m;n℄( ~Mb[m;n℄�Mb[m;n℄(z; d)); (5.7)
whi
h is obtained by taking the logarithm of the probability of the estimated motion ve
torsa

ording to the distribution model.Sin
eMb[m;n℄(z; d), given by (5.5), is linear on z and d, the minimization a
tually 
orrespondsto the least squares solution of a linear equation (whi
h 
an be derived from (5.7) by usingKrone
ker operators), whose properties have been introdu
ed when dis
ussing the 
at andaÆne region models in Chapter 4.4Hough transform-based estimation algorithms are related to the LMedS (Least Median of Squares) robustestimation method, see [111℄.
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Simplifying the estimationThe 
ovarian
e matrix C[m;n℄ of the motion ve
tors ~Mb[m;n℄, estimated in this 
ase throughblo
k mat
hing, may be important for obtaining a

urate estimates of the 
amera movementfa
tors. Here, however, the 
ovarian
e matrix is simpli�ed. The estimation and use of a full
ovarian
e matrix remains as an issue for future work.Instead of estimating the 
ovarian
e matrix, we build one whi
h intuitively makes sense, andwhi
h gives appropriate results in pra
ti
e. There are two sour
es of errors for the least squaresestimator if the 
ovarian
e matrix is simpli�ed to C[m;n℄ = �2I2, with I2 the identity matrix:

1. blo
ks whi
h do not 
orrespond to 
amera movement, i.e., blo
ks en
ompassing one orseveral moving obje
ts, or blo
ks 
ontaining un
overed areas (without a 
orresponden
ein the previous image), are given the same weight as blo
ks 
orresponding to 
ameramovements; and2. badly estimated motion ve
tors, namely those where the minimum error is in a very 
atvalley (shallow or wide) of the predi
tion error surfa
e, are given the same weight as blo
kswith good motion ve
tors, where the minimum error is in a deep trough of that surfa
e(this is related to the aperture problem already mentioned).
The �rst problem is related to motion ve
tors whi
h most de�nitely do not have the Gaussiandistribution around the model, as taken in the previous se
tion: they are outliers. Outlierremoval will also be attempted in the 
omplete algorithm, but some outliers are likely to remaineven after su
h removal. Fortunately, the 
ases 
orresponding to the �rst problem, whi
hare missed by the outlier dete
tion me
hanisms, usually result in a large predi
tion error, atleast larger than for blo
ks with pure 
amera movement. Hen
e, if the predi
tion error isused in pla
e of the varian
e, better estimates result. The 
ovarian
e matrix will thus beC[m;n℄ = ~E[m;n℄I2, with ~E[m;n℄ = E[m;n℄( ~Mb[m;n℄) (see (5.6)). In pra
ti
e, however, sin
e~E[m;n℄ may be zero in o

asions, and C[m;n℄ 
annot be singular, the 
ovarian
e matrix istaken to be C[m;n℄ = (1 + ~E[m;n℄)I2.The se
ond problem has not been addressed here dire
tly. A numeri
ally sound approa
h mightbe to �t a paraboloid (with ellipsoidal se
tion, and axes in any dire
tion) to the error surfa
e,
entered in the minimum error, and take the parameters of a se
tion of the paraboloid at a�xed height as the elements of the 
ovarian
e matrix,5 possibly s
aled up or down a

ording tothe minimum predi
tion error, as in the previous paragraph. This would allow the algorithmto 
ope appropriately with narrow valleys of the predi
tion error by allowing the model of theestimated motion ve
tors to in
lude a 
ovarian
e, o� diagonal, element. This approa
h was notfollowed, for questions related to the 
omputational 
ost of the algorithms, and remains as anissue for future work.5Remember that the equation of an ellipse may be written as�x y�C�1 �xy� = r;with C positive de�nite.
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Finally, it must be remembered that, by assigning the same varian
e to both 
omponents of theestimated motion ve
tors, as in C[m;n℄ = (1 + ~E[m;n℄)I2, the pixel aspe
t ratio is not takeninto a

ount, so that, when the pixels are not square, one dire
tion is given more weight in theminimization than the other. To solve this problem, the 
ovarian
e matrix will be taken to be

C[m;n℄ = (1 + ~E[m;n℄) ��2 00 1� :

If, as proposed before, the full 
ovarian
e matrix is estimated by �tting a paraboloid to thepredi
tion error surfa
e, this 
orre
tion is obviously not ne
essary.Sin
e any positive de�nite 
orrelation matrix C of a 2D random variable 
an be rendered to theform C = �2I2 by transforming the random variable by a rotation � and a s
aling s of its (say)y axis, and thus 
an be des
ribed by �, �, and s, the approximation used here 
orresponds tosetting � to 0, s to the inverse of the pixel aspe
t ratio, and �2 to the predi
tion error (plusone).

Masking the blo
ks
As said before, not all blo
ks 
orrespond to 
amera movements, and as su
h an essential stepis the removal of outliers. Su
h a step 
an be taken as produ
ing a mask matrix M , with BLlines and BC 
olumns, whi
h is zero if blo
k b[m;n℄ is an outlier and one otherwise. Using thismask, together with the approximation of C[m;n℄ proposed in the last se
tion, the expressionto minimize 
an be written as
BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄� ~Mb[m;n℄�Mb[m;n℄(z; d)�T ���2 00 1� � ~Mb[m;n℄�Mb[m;n℄(z; d)�:(5.8)
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Solution and its uniquenessLet
A = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄���2��m� BL � 12 �Lb�2 + ��n� BC � 12 �Cb�2�;
Bi = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄�m� BL � 12 �Lb;
Bj = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄�n� BC � 12 �Cb;
C = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄���2�m� BL � 12 �Lb ~Mbi [m;n℄ + �n� BC � 12 �Cb ~Mbj [m;n℄�;
Di = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄ ~Mbi [m;n℄;
Dj = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄ ~Mbj [m;n℄, and
S = BL�1Xm=0 BC�1Xn=0 M [m;n℄1 + ~E[m;n℄ ;

where ~Mb[m;n℄ = � ~Mbi [m;n℄ ~Mbj [m;n℄�T . Then, if S(AS���2B2i �B2j ) 6= 0, the minimumof (5.8) is unique and found at
~z = CS � ��2BiDiAS � ��2B2i �B2j ; (5.9)
~di = SADi +BiBjDj �B2jDi � SBiCS(AS � ��2B2i �B2j ) , and (5.10)
~dj = SADj + ��2(BiBjDi �B2iDj)� SBjCS(AS � ��2B2i �B2j ) : (5.11)

If S(AS � ��2B2i � B2j ) 6= 0, then either S = 0 and/or AS � ��2B2i � B2j = 0. But S = 0only if the mask M is all null (sin
e ~E[m;n℄ � 0), in whi
h 
ase there is no data, only outliers,rendering estimation impossible. On the other hand, if AS � ��2B2i � B2j = 0, the solution
eases to be unique. The standard least squares algorithms, in 
ases of non-uniqueness, oftenreturn the smallest possible solution. In this 
ase, however, the fa
tors z and d do not have thesame units, and hen
e su
h a solution is meaningless. Two interesting (possible) solutions areas follows:
1. Choose z as zero (no zoom), and �nd the 
orresponding pan fa
tor. In this 
ase the
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solution is ~z = 0;~di = DiS , and~dj = DjS :

2. Set z to its extrapolation ẑ from the estimates of the previous images and solve for d~z = ẑ;~di = Di �BiẑS , and~dj = Dj �Bj ẑS :
This solution attempts to maintain zoom movements as smooth as possible, sin
e in pra
-ti
e zoom movements are slower than pan movements, espe
ially for hand-held 
ameras,where vibration 
an be quite strong and zooming is performed through a motor, whi
h istypi
ally quite slow.

The former solution is the one used in the proposed algorithm. The latter has been left forfuture work.The next se
tions show how the least squares estimation may be improved by using appropriateoutlier dete
tion methods and motion ve
tor �eld smoothing algorithms.
5.3.2 Outlier dete
tion
As said before, the motion ve
tor �eld of an image relative to the previous one may 
ontainmotion ve
tors whi
h do not 
orrespond to 
amera movement, either be
ause they 
ontainobje
ts with independent motion, or be
ause they 
ontain areas with no 
orresponden
e in theprevious image.
Un
overed areas
Given an initial estimate of the 
amera movement fa
tors, it is easy to 
lassify those blo
ksthat 
ontain un
overed zones be
ause of the 
amera movement. Simply re
onstru
t the motionve
tors of ea
h blo
k (and round them to integer 
oordinates), using the initial estimate ofthe 
amera movement fa
tors, and mark as 
ontaining un
overed ba
kground those for whi
hthe motion ve
tor takes the referen
e blo
k outside of the previous image. Sin
e those motionve
tors are likely to be wrongly estimated, this is a reasonable step to take.
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Lo
al motion
As to the blo
ks 
ontaining obje
ts (or parts thereof) with independent motion, two di�erentmethods will be 
ompared. The �rst method relies on simple 
omparison of the estimatedmotion ve
tors with the ones predi
ted by the estimated 
amera motion fa
tors, was alreadyproposed in [122℄. The se
ond method is based in the 
on
ept of the Hough transform. Whilethe �rst method may be seen as an iterative Case Deletion method for in
reasing the robustnessof the least squares estimator [57℄, the se
ond performs a 
lustering of the data points in theHough transform parameter spa
e, from whi
h a rough segmentation of the data points intotwo disjoint sets (valid data points and outliers) 
an be obtained. It is a simple version of themethod proposed in [4℄.
A distan
e based approa
h
This method uses a simple thresholding te
hnique for 
lassifying blo
ks as possessing lo
almotion or not. Given the initial estimates ~z and ~d of the 
amera movement fa
tors, the es-timated motion ve
tors ~Mb[m;n℄ are 
ompared with the ones predi
ted by the model, i.e.,with M[m;n℄(~z; ~d). If k ~Mb[m;n℄ � M[m;n℄(~z; ~d)k=kM[m;n℄(~z; ~d)k > t, where t is a giventhreshold, then the blo
k is deemed to possess lo
al motion and 
lassi�ed as su
h. WhenkM[m;n℄(~z; ~d)k = 0, the test is performed not on the relative size of the di�eren
e betweenthe motion ve
tors but on the absolute size of the estimated motion ve
tor itself, i.e., ifk ~Mb[m;n℄k > t2, where t2 is another threshold, the blo
k is deemed to possess lo
al motion.The threshold t2 is taken, in the algorithm, to equal 10t, so as to render the method dependentof single parameter. This relation between t2 and t was 
hosen empiri
ally and gives a

eptableresults in pra
ti
e.Finally, it should be mentioned that, in both 
ases, the norms are 
al
ulated on the motionve
tors expressed in site 
oordinates, so as to take the pixel aspe
t ratio into a

ount.
A Hough transform approa
h
This approa
h is very similar to the one in [4℄, even though mu
h simpler and adapted to the
amera movement model used in this thesis, and thus more eÆ
ient.The algorithms for 
amera movement estimation proposed make a simple assumption aboutthe movement, as will be seen: if more than 40% of the blo
ks in an image 
an be des
ribedadequately by a set of 
amera motion fa
tors and no other larger group of blo
ks exists inthe same 
ir
umstan
es, then those blo
ks are taken to represent stati
 ba
kground and theestimated fa
tors to represent the a
tual 
amera movement. This assumption 
an obviously failat times, but it is simple and gives good results in pra
ti
e. However, the method des
ribedpreviously 
an have some diÆ
ulties with this assumption, sin
e the initial fa
tors are estimatedbefore outlier removal, and thus 
an fall midway between two di�erent motions in a s
ene,probably resulting in the 
lassi�
ation of nearly all blo
ks as outliers. In order to solve thisproblem, a di�erent pro
edure is used here, whi
h in fa
t intertwines a rough estimation with
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outlier dete
tion. It uses the 
on
ept of Hough transform, whi
h 
an be found on any imagepro
essing textbook [56℄.Let the spa
e of the possible 
amera movement fa
tors be bounded and divided into a

umulator
ells, here 
alled bins for simpli
ity. Sin
e the pan fa
tor 
omponents di and dj are dire
tlyrelated with the motion ve
tors in 
ase of a zoomless movement, they will be bounded to[�dimax ; dimax ℄ and [�djmax ; djmax ℄, respe
tively. As to the zoom fa
tor, it will be bounded to[�0:2; 0:2℄, based on empiri
al eviden
e about the range of typi
al zoom movements (and alsobe
ause, for CIF images, used in this 
hapter, these values result in motion ve
tors for the outerblo
ks whi
h ex
eed the maximum horizontal displa
ement of djmax = 30 used). The numberof bins was 
hosen so as to divide this bounded region into bins small enough to provide arough estimate of the fa
tors, and large enough to render the Hough transform approa
h useful,by allowing the Hough transform of estimated motion ve
tors 
orresponding to a single set of
amera movement model parameters to 
on
entrate in a single bin. The following empiri
alvalues where found to yield good results: 41 bins for z, and 42 bins for both di and dj , totalling72324 bins. If an initial estimate of the 
amera movement fa
tors is available, these bins areo�set so that the motion ve
tors generated by these initial fa
tors all 
oin
ide in the 
enter ofa single bin. This 
ontributes to avoid errors due to a dispersion of the Hough transformedmotion ve
tors among two, four, or even among eight bins.Let H be a 3D a

umulator array with 41 planes of 42 � 42 bins. For ea
h estimated motionve
tor ~Mb[m;n℄, the zoom fa
tors z 
orresponding to the 
enter of ea
h bin are tried. Giventhe model (5.5) this results indi = ~Mbi [m;n℄� z�m� BL � 12 �Lb, anddj = ~Mbj [m;n℄� z�n� BC � 12 �Cb:
The bin in H 
orresponding to the zoom fa
tor being 
urrently tried and to the pan fa
tor
omponents 
al
ulated above is in
remented. After pro
essing all estimated motion ve
tors, the
enter of the bin 
ontaining the largest value (whi
h 
an be tra
ked dynami
ally while �lling H)is taken as a rough estimate of the 
amera movement fa
tors. Blo
ks whose estimated motionve
tors 
ontributed to that bin or to a bin 
loser than a given threshold th (using a 
hess-boarddistan
e, i.e., the maximum of the absolute values, expressed in number of bins), are deemed toagree with the estimated 
amera movement fa
tors. Even though a rough estimate is 
al
ulatedby this method, it is dis
arded, sin
e the mask of valid blo
ks will be later used to estimate,with the least squares estimator, more a

urate values for those fa
tors.Those blo
ks whi
h where deemed to 
ontain un
overed areas are not a�e
ted by the pro
edureabove.Zones of the image, en
ompassing more than one blo
k, and possessing motion whi
h 
annot bedes
ribed by the assumed model will tend to disperse their 
ontribution to the Hough transformthrough a large number of bins in H. On the 
ontrary, zones whose motion is des
ribable bythe model will tend to 
on
entrate on the bin 
orresponding to the model parameters. Bysele
ting the maximal bin, the largest of these model 
ompliant zones will be 
hosen. If no su
hzone exists, the 
hosen maximum will be small, leading to a mask with few valid blo
ks. Later
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parts of the algorithm will dete
t this and either attempt to relax the threshold th or quit theestimation, if further relaxation is not a

eptable.Finally, it should be noti
ed that if pan movements only are being estimated, this methodredu
es to sele
ting the maximum of the histogram of motion ve
tors, whi
h was proposedin [110℄.
5.3.3 SmoothingWhenever there are zones with a relatively uniform 
olor or pattern, e.g. two 
olors separatedby a straight boundary, the motion ve
tors estimated by the blo
k mat
hing algorithm will tendto be erroneous. This is the so 
alled aperture problem. Su
h 
ases might be partially dealt withby estimating the 
ovarian
e matri
es C[m;n℄ and using them in the least squares estimation.As this has not been done, for reasons of eÆ
ien
y, some other method of dealing with theseerrors has to be used. It is true that part of these errors would probably be 
aptured by theoutlier dete
tion part of the algorithm, but at the 
ost of estimates for the 
amera movementfa
tors whi
h would be based on a smaller number of data points. In some situations, that mighteven render estimation of 
amera movement impossible, for la
k of enough blo
ks to performthe estimate (40% of the total).In order to solve these problems, a simple method for regularizing the estimated motion ve
tor�eld has been devised. Given estimates ~z and ~d of the 
amera movement fa
tors, a 
orrespondingmotion ve
tor �eld is 
onstru
ted, as in equation (5.5), though rounded to integer 
oordinates.Let �Mb[m;n℄(~z; ~d) be that ve
tor �eld. Then, of the set of possible motion ve
tors Mb[m;n℄whi
h are 
loser to �Mb[m;n℄(~z; ~d) than ~Mb[m;n℄ is, and whose predi
tion error is small enough,namely E[m;n℄(Mb[m;n℄) � ( ~E[m;n℄ + 1)(1 + ts), the one whi
h is 
loser to �Mb[m;n℄(~z; ~d)is 
hosen as the new, smoothed estimate. If there is a tie, the motion ve
tor with the smallerpredi
tion error is 
hosen. If again there is a tie, the one 
loser to the original estimate ~Mb[m;n℄is 
hosen. If no su
h ve
tor is found, the estimate is left as is.The smoothing threshold ts 
ontrols how mu
h in
rease in the predi
tion error is allowablewhile manipulating the estimated motion ve
tor. An empiri
al value of 6% has been used inthis thesis. As to the sum of 1 to the minimum predi
tion error, it allows some smoothing too

ur even if the minimum predi
tion error is zero.A di�erent approa
h to motion ve
tor smoothing, using a Gibbs model, 
an be found in [185℄.
5.4 The 
omplete algorithms
Two algorithms are proposed here. The �rst, see Algorithm 1, is based on the original proposalof [122℄. It will be 
alled the \old algorithm", and it uses the distan
e based approa
h to thedete
tion of outliers. The se
ond, see Algorithm 2, is an improvement whi
h uses the Houghtransform approa
h to outlier dete
tion. It will be 
alled \new algorithm".Both algorithms use two loops. The inner loop performs 
amera motion estimation and outlier
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Algorithm 1 Estimation of the 
amera motion fa
tors using the old algorithm (based on [122℄).Require: t0 � 0 finitial outlier dete
tion thresholdgRequire: �t � 0 foutlier dete
tion threshold in
rementgRequire: tmax � t0 fmaximum outlier dete
tion thresholdgRequire: ts � 0 fsmoothing thresholdgRequire: 0 � ta � 1 f
amera movement dete
tion thresholdgRequire: imax > 0 fmaximum inner iterationsgRequire: � > 0 fpixel aspe
t ratiogRequire: Lb > 0 fnumber of lines per blo
kgRequire: Cb > 0 fnumber of 
olumns per blo
kgRequire: BL > 0 fnumber of lines of blo
ksgRequire: BC > 0 fnumber of 
olumns of blo
ksgRequire: ~Mb has BL �BC motion ve
torsRequire: j ~Mbi [m;n℄j � dimax ;8m 2 f0; : : : ; BL � 1g;8n 2 f0; : : : ; BC � 1gRequire: j ~Mbj [m;n℄j � djmax ;8m 2 f0; : : : ; BL � 1g;8n 2 f0; : : : ; BC � 1gEnsure: either \found" is false, and no 
amera movement has been found, or ~z and ~d areestimates of the 
amera movement fa
torst = t0 finitialize outlier dete
tion thresholdgrepeatMb  ~Mb f
opy estimated motion ve
tor �eldgE  ~E f
opy predi
tion errors 
orresponding to ~MbgM  1 f�ll M with ones (valid)gborder(M) fborder blo
ks are set to zero (outlier) in M (improves initial estimates in 
aseof a zoom out or a non-null pan)gi 0 finitialize number of inner iterationsgrepeat~z; ~d lse(Mb; E;M;Lb; Cb; �) festimate zoom and pan fa
tors using least squaresgbuild �Mb(~z; ~d) fbuild rounded motion ve
tor �eld from ~z and ~dgMb  smooth( ~Mb; �Mb(~z; ~d); ts) fsmooth ~Mb towards �Mb(~z; ~d) with threshold tsg
hanges;M  outliers(M; �Mb(~z; ~d); �; t) fmark un
overed blo
ks inM and lo
al motionblo
ks (distan
e based approa
h), set \
hanged" a

ording to whether any blo
k had itsmask 
hangedgi i+ 1until not 
hanged or i = imaxfound (valid(M) > taBLBC) fset \found" a

ording to whether there are enough valid(non-outlier) blo
ksgt t+�t fin
rement outlier dete
tion thresholdguntil found or t > tmax
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Algorithm 2 Estimation of the 
amera motion fa
tors using the new algorithm.Require: thmax � 0 fmaximum outlier dete
tion thresholdgRequire: ts � 0 fsmoothing thresholdgRequire: 0 � ta � 1 f
amera movement dete
tion thresholdgRequire: imax > 0 fmaximum inner iterationsgRequire: � > 0 fpixel aspe
t ratiogRequire: Lb > 0 fnumber of lines per blo
kgRequire: Cb > 0 fnumber of 
olumns per blo
kgRequire: BL > 0 fnumber of lines of blo
ksgRequire: BC > 0 fnumber of 
olumns of blo
ksgRequire: ~Mb has BL �BC motion ve
torsRequire: j ~Mbi [m;n℄j � dimax ;8m 2 f0; : : : ; BL � 1g;8n 2 f0; : : : ; BC � 1gRequire: j ~Mbj [m;n℄j � djmax ;8m 2 f0; : : : ; BL � 1g;8n 2 f0; : : : ; BC � 1gEnsure: either \found" is false, and no 
amera movement has been found, or ~z and ~d areestimates of the 
amera movement fa
torsth  0 finitialize outlier dete
tion thresholdg~z  0 finitial estimate: no zoomg~d 0 finitial estimate: no pangrepeatMb  ~Mb f
opy estimated motion ve
tor �eldgE  ~E f
opy predi
tion errors 
orresponding to ~MbgM  1 f�ll M with ones (valid)gborder(M) fborder blo
ks are set to zero (outlier) in M (improves initial estimates in 
aseof a zoom out or a non-null pan)gi 0 finitialize number of inner iterationsgrepeat
hanges;M  hough(Mb; E; ~z; ~d; Lb; Cb; th) fperform outlier dete
tion, set \
hanged"a

ording to whether any blo
k had its mask 
hangedg~z; ~d lse(Mb; E;M;Lb; Cb; �) festimate zoom and pan fa
tors using least squaresgbuild �Mb(~z; ~d) fbuild rounded motion ve
tor �eld from ~z and ~dgMb  smooth( ~Mb; �Mb(~z; ~d); ts) fsmooth ~Mb towards �Mb(~z; ~d) with threshold tsg
hanges;M  un
overed(M; �Mb(~z; ~d); �; t) fmark un
overed area blo
ks (outliers) inMand set \
hanged" to true if any blo
k had its mask 
hangedgi i+ 1until not 
hanged or i = imaxfound (valid(M) > taBLBC) fset \found" a

ording to whether there are enough valid(non-outlier) blo
ksgth  th + 1 fin
rement outlier dete
tion thresholdguntil found or th > thmax
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dete
tion until the mask of valid blo
ks remains un
hanged or until the limit number of inneriterations is attained. In both 
ases the mask is not guaranteed to 
onverge, hen
e the needfor a limited number of iterations. Noti
e that the order of estimation and outlier dete
tion isinverted: in the old algorithm estimation is performed �rst, while in the new algorithm outlierdete
tion is performed �rst. Of 
ourse, as noti
ed before, outlier dete
tion in the new algorithma
tually involves roughly estimating the movement parameters before dete
ting outliers, so that,for ea
h inner iteration on the new algorithm, two estimations are performed. The advantageis that the outlier dete
tion using the Hough transform is mu
h more robust, sin
e it expli
itlysele
ts the most probable bin. The use of the least squares estimation to obtain the �nal resultsis due to the la
k of pre
ision of the Hough estimator. This la
k of pre
ision is due to the fa
tthat the parameter spa
e of the Hough transform has been 
oarsely quantized to guaranteemeaningful results for the relatively small number of data points used: the 
amera movementestimates are based on blo
k mat
hing results on a 
oarse 16� 16 grid.The outer loop 
he
ks whether the number of valid blo
ks on whi
h the estimate is based issuÆ
ient to 
onsider that 
amera movements are present in the 
urrent image (relative to theprevious). If not, it in
rements the threshold over whi
h blo
ks are 
onsidered outliers in outlierdete
tion (but only the part relative to lo
al motion, not to un
overed areas), thereby relaxingthe requirements until either 
amera motion is 
onsidered present or the maximum relaxationis attained. With this outer loop, it is possible to estimate 
amera motion fa
tors as a

uratelyas possible, by starting with stringent requirements and �nishing with more relaxed ones. Ifthe maximum relaxation is attained before 
amera movement is dete
ted, the algorithms fails.Sin
e even images possessing zero pan and zoom fa
tors 
an be 
lassi�ed as having 
ameramovement, the algorithm failure may mean, in both 
ases, that the s
ene is too 
omplex forthe algorithms or that a s
ene 
ut has been rea
hed (the 
urrent image is unrelated with theprevious).Both algorithms su�er from an inherent limitation of a

ura
y: both are based on pixel levelblo
k motion ve
tors. The results are thus likely to su�er from errors, espe
ially for very smallpan movements without any zooming, whi
h may in fa
t be estimated as no movement at all.The a

ura
y may be improved by using blo
k mat
hing methods with sub-pixel a

ura
y. Thiswas not tried here, however.
5.4.1 Results
Experimental 
onditionsThe algorithms have been tested with the parameters shown in Tables 5.1(a), 5.1(b) and 5.1(
).
Estimating zoom o�setThe \Table Tennis" sequen
e 
onsists of two shots. The se
ond, from image 131 on, 
ontains no
amera movement, and thus will not be of great interest here. From images 0 to 130, though,there is a zoom movement. It starts slowly around image 20, in
reases its speed, then slowly
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L 288 CIF linesC 352 CIF 
olumns, or pixels per lineLb 16 pixelsCb 16 pixelsBL 18 blo
ksBC 22 blo
ksdimax 32 pixelsdjmax 30 pixels� 1:0(6) 16/15 (see Se
tion A.1.1)(a) Common format parameters.
t0 0:1 10%�t 0:1 10%tmax 0:5 50%ts 0:06 6%ta 0:4 40%imax 15 iterations(b) Old algorithm.

thmax 1 Hough a

umulator binsts 0:06 6%ta 0:4 40%imax 15 iterations(
) New algorithm.
Table 5.1: Algorithms parameters.
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de
reases towards its end, around image 107. The zoom movement is only 
lear, though, fromimages 24 (23 to 24) to 106 (105 to 106). Note that this zoom movement is not a

ompaniedby any pan movement, as 
an be readily seen by dire
t observation of the sequen
e.Figures 5.1 and 5.2 show the estimated 
amera movement fa
tors of the \Table Tennis" sequen
eusing the old and the new algorithms, respe
tively.In Figures 5.1(b) and 5.2(b) it 
an be seen that, despite the fa
t that there is no panning inthe original sequen
e, non-zero pan fa
tor 
omponents were dete
ted. It should be noti
ed,however, that in the 
ase of the new algorithm these fa
tors are non-zero only when there iszooming in the sequen
e. In the 
ase of the old algorithm, some spurious zoom and pan fa
torso

ur out of the 24 to 106 image range, but this is due to the lower quality of its estimation.Thus, from the results of the new algorithm, in Figure 5.2(b), it 
an be inferred that the 
enterof s
aling of the zoom is o�set from the 
enter of the image.Let the 
enter of zoom be o�set from the 
enter of the image. Let dsz be this o�set. After a purezoom with s
aling fa
tor Z o�set by dsz, a site s in the image 
hanges its position to s0, wheres0 = Z(s� dsz) + dsz = Z�s� �1� 1Z �dsz�: (5.12)
Comparing with (5.3), it 
an be seen that this o�set zoom is equivalent to a pan plus zoomwith s
aling Z and translation ds = (1 � 1=Z)dsz. Converting to the usual 
amera movementfa
tors z and d d = � �0 ��1 0 � zdsz = �zdz;where dz is the o�set expressed in pixel 
oordinates.Hen
e, the estimated pan fa
tor should vary linearly with the zoom fa
tor. By observingFigures 5.2(a) and 5.2(b), it 
an be seen that this behavior is approximately true, espe
iallyfor the di 
omponent of the pan fa
tor, whi
h attains larger values, and hen
e su�ers less fromestimation errors.Using linear regression, it is possible to estimate the zoom o�set in pixel 
oordinates dz fromthe estimated values of z and d for images 24 to 106. The value obtained for dz wasdz = � 10:3116�4:16089� ;whose estimated standard deviations (see [165, x15.2℄) are 1:34175 and 1:03135, respe
tively.These values agree reasonably well with dire
t observation, whi
h yielded approximately dz =�7 �3:5�T . It 
an be 
on
luded that, even though 
amera movement estimation is basedon blo
k mat
hing results, with pixel a

ura
y, it does yield estimation results with sub-pixela

ura
y (at least when there are strong zoom movements). An issue whi
h remained for futurework is the quanti�
ation of the errors in the 
amera movement fa
tors estimated.Given the estimated zoom and pan fa
tors and using (5.3) repeatedly, it is possible to estimatethe position in ea
h image of a point originally in the 
enter of the image plan. Figure 5.3
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image

z

300250200150100500

0.030.0250.020.0150.010.0050-0.005
(a) Zoom fa
tor.

image

d

300250200150100500

0.30.20.10-0.1-0.2-0.3-0.4-0.5
(b) Pan fa
tor (di solid line, dj broken line).

Figure 5.1: \Table Tennis": 
amera movement estimation results (old algorithm). Cameramovement has not been dete
ted in image 131, where a s
ene 
ut o

urs.



206 CHAPTER 5. TIME ANALYSIS

image

z

300250200150100500

0.030.0250.020.0150.010.0050
(a) Zoom fa
tor.

image

d

300250200150100500

0.30.20.10-0.1-0.2-0.3-0.4
(b) Pan fa
tor (di solid line, dj broken line).

Figure 5.2: \Table Tennis": 
amera movement estimation results (new algorithm). Cameramovement has not been dete
ted in image 131, where a s
ene 
ut o

urs.
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shows this estimate, together with the same estimate using (5.12) with the value obtained fordz by linear regression. It 
an be seen that the fa
tors estimated do lead to an approximatelylinear evolution of the 
enter, whi
h further 
orroborates the hypothesis that the pan is due toan o�set in the 
enter of zoom.

x

y

0-0.5-1-1.5-2-2.5-3-3.5-4-4.5

0-1-2-3-4-5-6-7-8
Figure 5.3: \Table Tennis": evolution of the 
enter of the image plan from image 23 to image106 using (5.3), solid line, and (5.12), broken line. Fa
tors estimated using the new algorithm.Figure 5.4 shows the result of transforming the �rst image of the \Table Tennis" sequen
e usingthe 
omposition of all estimated 
amera movement fa
tors up to images 60, in the middle of thezoom movement, and 124, well after the end of the zoom movement. The result of these twotransformations of the �rst image is then overlapped with the original images 60 and 124. It is
lear that the size of the transformed images seems to agree very well with the 
orrespondingoriginal image. There is, though, a slight displa
ement in its position, of the order of one ortwo pixels. The good agreement in image size seems to indi
ate that the zoom fa
tors are beinga

urately estimated (it must be remembered that the transformations integrate about 36 and80 fra
tional zoom fa
tors, respe
tively). The slight o�set in position 
an be seen to be of theorder of the error between the two lines in Figure 5.3.
Comparison of the algorithmsS
ene 
utsAs said before, the failure of dete
tion of 
amera movement 
an o

ur for several reasons, one ofthem being the o

urren
e of a s
ene 
ut. The robustness of the algorithms 
an be as
ertainedby 
he
king their ability to dete
t real s
ene 
uts, and by 
he
king the number of false s
ene
ut dete
tions generated.
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(a) Overlap with image 60.

(b) Overlap with image 124.
Figure 5.4: \Table Tennis": overlap of the original images with image 0 transformed a

ordingto the 
amera movement fa
tors estimated by the new algorithm.
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Several sequen
es have been tested, namely \Carphone", \Coastguard", \Flower Garden",\Foreman", \Stefan", \Table Tennis", and \VTPH". Of these sequen
es, only \Table Ten-nis" and \VTPH" 
ontain s
ene 
uts. In \Table Tennis" two shots of a game are shown, thes
ene 
ut taking pla
e from image 130 to image 131. In the 
ase of \VTPH", two s
ene 
utso

ur from image 79 to image 80 and from image 130 to image 131. In the following, s
ene 
utswill be identi�ed by the number of their se
ond image.Tables 5.2(a) and 5.2(b) show the o

urren
e of erroneous dete
tions (i.e., dete
tion of 
ameramotion at s
ene 
uts) or non-dete
tions (i.e., failure to dete
t 
amera movement at normal,non-s
ene 
ut images) of 
amera movement in the test sequen
es.

dete
tions non-dete
tions\Carphone" 203, 312, and 314\Flower Garden" 62\Foreman" 47, 49, and 153 to 157`Stefan" 2, 9, 65, 66, 85, 133, 141, 171, 172, 211, 214, 216, and 286\VTPH" 80 86, 93, 102, 103, 110, and 111(a) Old algorithm.
dete
tions non-dete
tions\Foreman" 156, 191, and 192(b) New algorithm.

Table 5.2: Camera movement erroneous dete
tions and non-dete
tions.The superior performan
e of the new algorithm is 
lear. The old algorithm frequently fails todete
t 
amera movement where there is no s
ene 
ut. But it also fails to dete
t a true s
ene
ut at image 80 of the \VTPH" sequen
e. Hen
e, it 
an be said that its results would notbe improved by allowing further relaxation on the outer loop, sin
e this would lead to lesserroneous non-dete
tions but also to further erroneous dete
tions. On the other hand, the newalgorithm 
orre
tly 
lassi�es the three s
ene 
uts and only fails to dete
t 
amera movementat three normal images of the \Foreman" sequen
e. In image 156, this failure is due to themovement of the hand in front of the 
amera. In images 191 and 192, it seems to stem froma badly estimated motion ve
tor �eld, whi
h is due to a strong pan movement with motionblurring.
A

ura
yBoth algorithms are based on the same least squares estimator, so the a

ura
y of the resultis strongly dependent on the outlier dete
tion me
hanism used. The previous results 
learlyshow that the outlier me
hanism of the old algorithm leads to frequent erroneous dete
tionsor non-dete
tions of 
amera movement. But even in 
ases where 
amera movement is present
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and dete
ted, the outlier dete
tion me
hanism 
an lead to poor quality estimates. Figures 5.5and 5.6 show the 
amera movement fa
tors estimated by both algorithms for the \Stefan"sequen
e.The regularity in the time evolution of the fa
tors for the new algorithm is not a 
oin
iden
e. Itis not imposed by the algorithm itself, sin
e the algorithm operates independently for ea
h imageof the sequen
e. Hen
e, it 
an only stem from the regularity of the true 
amera movements (itis a TV sequen
e, and TV operators usually try to a
hieve smooth 
amera movement, espe
iallywhen shooting sport images). The 
on
lusion 
an only be that the results of the old algorithmare mu
h worst, sin
e the estimated fa
tors have a quite rough time evolution.In order to as
ertain the a

ura
y of the new algorithm, the estimated 
amera motion fa
torswere integrated along time and the integrated values were used to move a box whi
h was handpositioned over a parti
ular feature of the s
ene present on the �rst image. Figures 5.7 and 5.8show the box in the �rst image of the test sequen
es used (in this 
ase \Coastguard", \FlowerGarden", \Foreman", and \Stefan"), and the same box displa
ed and s
aled a

ording to theintegration of the estimated 
amera movement fa
tors in a posterior image (
lose to the lastimage where the feature is visible in the sequen
e and before any non-dete
tions of 
ameramovement). The positioning of the box relative to the 
orresponding feature 
an be used as ameasure of the a

ura
y of the estimation, remembering that estimation errors are a

umulatedin the integration pro
edure.For the \Coastguard" sequen
e, the box position o�set is approximately 20 pixels horizontallyand 10 pixels verti
ally. Taking into a

ount that the box has been positioned a

ording tothe integration of the 
amera movement fa
tors obtained for ea
h image with referen
e to theprevious, and also taking into a

ount that this o�set is obtained after 200 images, the result
an only be 
lassi�ed as good. Besides, the sequen
e is not trivial, sin
e it 
ontains two obje
tswith independent motion (the two boats), and the water with its random motion.As to the \Flower Garden" sequen
e, the o�set is of about 20 pixels in both dire
tions for arange of 125 images. In this 
ase, though, the 
amera movement is neither a pan nor a zoom:it is a traveling movement, in whi
h the 
amera 
hanges its positions. Hen
e, the motion in theproje
ted image 
annot be des
ribed by the model used and depends on the relative distan
eof the obje
ts: obje
ts whi
h are 
loser move faster and obje
ts whi
h are farther move slower.This justi�es the horizontal o�set, sin
e the algorithm takes the whole image into a

ount. Also,some obje
ts 
an have a proje
ted verti
al motion even if the 
amera moves horizontally. Thisis the 
ase of window, and it justi�es the verti
al o�set in its position. Nevertheless, it 
an besaid that the algorithm performs reasonably well even when the true 
amera movement doesnot truly 
onsist of zooming and panning.In the \Foreman" sequen
e the o�set is very small. The sequen
e is not simple sin
e it 
an beseen to possess a 
omposition of pan movements with small rotation movements about the lensaxis whi
h a�e
ts the estimation algorithm.Finally, the \Stefan" sequen
e 
ontains two diÆ
ult parts for the algorithms: small movementsin the spe
tators, and the rather uniform game 
oor, for whi
h blo
k mat
hing yields erroneousresults. Nevertheless, the position o�set after 244 images is small, of the order of 20 pixelshorizontally, and negligible in the verti
al dire
tion.
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image

d

300250200150100500

20151050-5-10-15-20-25
(a) Pan fa
tor.

image

z

300250200150100500

0.060.050.040.030.020.010-0.01-0.02-0.03-0.04
(b) Zoom fa
tor.

Figure 5.5: \Stefan": 
amera movement fa
tors estimated by the old algorithm (shown only forimages with dete
ted 
amera movement).
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2520151050-5-10-15-20-25-30
(a) Pan fa
tor.
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z

300250200150100500

0.030.020.010-0.01-0.02-0.03-0.04
(b) Zoom fa
tor.

Figure 5.6: \Stefan": 
amera movement fa
tors estimated by the new algorithm.
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(a) \Coastguard" image 0. (b) \Coastguard" image 200.

(
) \Flower Garden" image 0. (d) \Flower Garden" image 124.
Figure 5.7: Pseudo-feature tra
king 
apability of the new algorithm.
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(a) \Foreman" image 0. (b) \Foreman" image 150.

(
) \Stefan" image 0. (d) \Stefan" image 243.
Figure 5.8: Pseudo-feature tra
king 
apability of the new algorithm.
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Computational requirements
The total running time for the estimation of 
amera movement for every image, ex
ept the �rst,of the \Stefan" sequen
e, whi
h has 300 images, was of about 9500 se
onds for both algorithms.6However, full sear
h blo
k mat
hing a

ounts for about 98.5% of this time. Ex
luding full sear
h,for whi
h hopefully there are fast hardware implementations available, the old algorithm spent133.07 se
onds and the new algorithm 129.02 se
onds estimating 299 
amera movement fa
tors.I.e., both algorithms take about half a se
ond to run for ea
h image. The algorithms are thusessentially equivalent in 
omputation time, though the memory requirements are larger for thenew algorithm, sin
e it requires use of the matrix of Hough a

umulator 
ells H for outlierdete
tion.
5.5 Image stabilization
Image stabilization, be it me
hani
al or ele
troni
, is an important feature of today's video
ameras [102℄, whether they are hand-held or part of a videotelephone. It is important be
auseit improves the quality of moving images by redu
ing disturbing image vibrations 
aused byan unsteady hand. Sin
e image stabilization is performed before storage or transmission, the
ompression ratio is also improved, sin
e images are more easily predi
ted from the previousones.
5.5.1 Viewing window
Let the digital image available from a 
amera after sampling have L � C pixels. Let also theneeded output image have Lw � Cw, with Lw � L and Cw � C, and the same pixel size. Let�L = L�Lw2 and �C = C�Cw2 . The Lw�Cw image 
an be extra
ted from the 
amera image bypla
ing its 
enter, with site 
oordinates sw, within a re
tangle [��C ;�C ℄� [� 1��L; 1��L℄. There
tangle of width Cw and height 1�Lw 
entered at sw will be 
alled the viewing window. Theoutput image 
an be obtained from the 
amera image by sele
ting the 
orresponding 
ameraimage pixels, if vw (sw in pixel 
oordinates) has integer 
oordinates, or by using some typeof interpolation if the 
oordinates of vw 
an take non-integer values. In this se
tion bilinearinterpolation will be used for simpli
ity. Bilinear interpolation introdu
es a linear �ltering tothe 
amera image whose frequen
y response depends on the fra
tional parts of the 
oordinatesof vw. For instan
e, for null fra
tional parts of the 
oordinates of vw, no �ltering is performed(
at frequen
y response), while for half-pixel 
oordinates (fra
tional parts of 0.5), the pixelsof the output image are the average of four pixels in the 
amera image, 
orresponding to alow-pass �ltering of the 
amera image. This is 
learly not a desirable e�e
t, but the use of moreappropriate interpolation methods remained as an issue for future work.6On a Pentium 200 MHz, with 64 Mbyte RAM, running RedHat Linux 5.0 (kernel 2.0.32), programs 
ompiledwith g

 2.8.1 and full 
ompiler optimization (-O3), times extra
ted with gprof 2.8.1.
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5.5.2 Viewing window displa
ementSmall 
amera pan movements 
an be eliminated from the output image by displa
ing the viewingwindow, relative to its previous position, in the dire
tion of the dete
ted 
amera movement,thereby stabilizing the output image [192, 122℄. Sin
e the viewing window must always �t insidethe 
amera image, the amount of movement that 
an be eliminated is limited, of 
ourse.The obje
tive of the displa
ements of the viewing window is to maintain the point whi
h wasat its 
enter in one image also 
entered in the in the next image, even in the presen
e of 
ameramovement. Let sw[n℄ be the position of the 
enter of the viewing window at image n, and Z[n℄and ds[n℄ the 
amera movement fa
tors (in site 
oordinates) from image n�1 to image n. Thena point at the 
enter of the viewing window in image n�1 will be moved to Z[n℄(sw[n�1℄�ds[n℄)in image n, a

ording to equation (5.3). Hen
e, if this movement is to be eliminated from theoutput image, the 
enter of the viewing window has to be moved a

ordingly tosw[n℄ = Z[n℄(sw[n� 1℄� ds[n℄): (5.13)
If the 
oordinates of sw ever fall outside the re
tangle [��C ;�C ℄ � [� 1��L; 1��L℄, then the
amera movement 
annot be fully 
an
eled out, i.e., the image 
annot be stabilized as required.The evolution of the 
enter of the viewing window will thus be des
ribed by�swx [n℄swy [n℄� =

24 min�max�Z[n℄(swx [n� 1℄� dsx[n℄);��C�;�C�min�max�Z[n℄(swy [n� 1℄� dsy[n℄);� 1��L�; 1��L�
35 :

With this equation, after a large panning, say, to the right, the viewing window will be saturatedat the left of the 
amera image. Even after the panning stops, it will remain there, e�e
tivelyredu
ing the 
apabilities of image stabilization in that dire
tion. Hen
e, some me
hanism forreturning the viewing window to its rest position, viz. the 
enter of the 
amera image, mustbe devised. This is a

omplished through the introdu
tion of a loss fa
tor �(Z[n℄; ds[�℄) in theevolution of the 
enter of the viewing window�swx [n℄swy [n℄� =
24 min�max�Z[n℄((1� �(Z[n℄; ds[�℄))swx [n� 1℄� dsx[n℄);��C�;�C�min�max�Z[n℄((1� �(Z[n℄; ds[�℄))swy [n� 1℄� dsy[n℄);� 1��L�; 1��L�

35 : (5.14)
The loss fa
tor is usually zero, but when the pan fa
tor ds is small enough for a given numberof images, the loss will be set to a non-zero, small value, whi
h will slowly revert sw to the
enter of the 
amera image. When the zooming is very strong, the same thing happens, thoughwith a larger loss, so as to reset the viewing window position faster. When 
amera movementestimation fails, whi
h is likely to o

ur at s
ene 
uts, the 
enter of the viewing window is resetimmediately. Hen
e, the evolution of sw is governed by�swx [n℄swy [n℄� =

8><>:equation (5.14) if 
amera movement was dete
ted,"00# if 
amera movement estimation failed; (5.15)
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where

�(Z[n℄; ds[�℄) = 8><>:0:1 if jz[n℄j > 0:02 (where z[n℄ = 1Z[n℄ � 1),0:01 if jz[n℄j � 0:02 and kds[n� i℄k � 0:1 for i = 0; : : : ; 4, and0 otherwise. (5.16)
The values used in (5.16) were derived empiri
ally. The loss fa
tors of 0.1 and 0.01 were 
hosenbe
ause they reset the viewing window position in respe
tively 20 to 30 images (about 1 se
ondfor 25 Hz sequen
es) and in 220 to 230 images (about 9 se
onds for 25 Hz sequen
es). Thus, ifthe 
amera stops, it takes 9 se
onds for the viewing image to 
enter, while if a large zoom in orout o

urs, the viewing window is reset in 1 se
ond. The use of a loss only after �ve small panmovements pre
ludes it from a�e
ting e�e
tive image stabilization in the presen
e of vibration.
5.5.3 ResultsFigures 5.9, 5.10, 5.11 show the evolution of the 
enter of the image as given by (5.13), forthe CIF sequen
es \Stefan", \Foreman", and \Carphone". A
tually, the 
oordinates have bothbeen inverted so that the �gures show the movement of the 
amera. The �gures also showthe residual 
amera movement, i.e., the 
amera movement that remains after adjustment ofthe viewing window position a

ording to (5.15) and (5.16). The output image size used is268� 328, that is Lw = 268 (or �L = 10) and Cw = 328 (or �C = 12).These results show that the method e�e
tively stabilizes the output image, as 
an be seen bylooking at the residual 
amera movement, provided the 
amera movement fa
tors have beenwell estimated.In order to as
ertain the e�e
tiveness of the stabilization, whi
h depends on the quality of the
amera movement estimation, the output image sequen
es have to be viewed in real time. Thevisualization of the results shows that the stabilization of the \Stefan" and \Foreman" sequen
eswas very e�e
tive. In the 
ase of the \Carphone" sequen
e, the results are not as good. Thisresults essentially from the following:

1. the 
amera vibration is rather small, often smaller than one pixel;2. the stati
 ba
kground in rather uniform, whi
h makes the blo
k mat
hing motion ve
torsless reliable; and3. the speaker and the lands
ape seen through the window, both with motion independentof the 
amera, o

upy a signi�
ant part of the images.
The net result is that sometimes the estimated fa
tors re
e
t the motion of the speaker, notthe one of the ba
kground. Figures 5.12 and 5.13 show the di�eren
es between images 5 and6, and between images 26 and 27, with and without 
an
ellation. The �rst 
ase shows thatthe estimated 
amera movement has been \polluted" by the speaker, so that the di�eren
esin the window frame, to the right of the speaker, whi
h are due to horizontal pan movements,
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(a) Without stabilization.
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(b) With stabilization.
Figure 5.9: \Stefan": 
amera movement.
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(a) Without stabilization.
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(b) With stabilization.

Figure 5.10: \Foreman": 
amera movement. Note that the position of the 
amera is resetwhenever 
amera movement is not dete
ted (at images 156, 191, and 192).
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(b) With stabilization.

Figure 5.11: \Carphone": 
amera movement.
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have not been 
an
eled. The verti
al estimate, however, is quite pre
ise, as 
an be seen in theredu
ed di�eren
es obtained in to the left of the speaker. In the se
ond 
ase the estimated
amera movement is 
orre
t, sin
e the stati
 ba
kground has been mostly 
an
eled out. Theoverall results are quite a

eptable.

(a) Images 5 and 6. (b) Images 26 and 27.
Figure 5.12: \Carphone": di�eren
e between su

essive images without stabilization. The lumadi�eren
es are s
aled by 5 and o�set by 125.5 (half way the luma ex
ursion in Y 0CBCR), andthe 
hroma di�eren
es are s
aled by 5 and o�set by 128 (zero 
hroma in Y 0CBCR).

(a) Images 5 and 6. (b) Images 26 and 27.
Figure 5.13: \Carphone": di�eren
e between su

essive images with stabilization. See note inFigure 5.12.Figures 5.14, 5.15 and 5.16 show the 
omparison between the PSNR of ea
h image relative to
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the previous in the original sequen
es (but restri
ted to a 
entered window of 268 � 328) andin the stabilized sequen
es. The improvements in PSNR are quite good, even when the viewingwindow is saturated in one dire
tion. When it is saturated in both dire
tions, as around image200 of the \Foreman" sequen
e, the results are quite similar, as expe
ted.

image

PSNR
dB

300250200150100500

32302826242220181614
Figure 5.14: \Stefan": PSNR between ea
h pair of su

essive images. PSNR without stabi-lization, dotted line, with stabilization saturated viewing window position, broken line, withstabilization and no saturation of window position, solid line.Finally, it must be stressed here that the results of image stabilization on the \Stefan" sequen
eare valid for 
he
king the validity of the proposed method, even though (ele
troni
) imagestabilization is of little or no use in professionally shot sequen
es, whi
h often make use ofspe
ially 
onstru
ted devi
es to guarantee stability of the image, and where the 
amera operatorwants 
omplete 
ontrol of the sequen
e being shot.
5.6 Con
lusions
Two 
amera movement estimation algorithms have been proposed, the se
ond of whi
h 
an beseen as a simpli�
ation of the method in [4℄. However, both methods integrate a motion ve
torsmoothing intermediate step whi
h tends to redu
e the number of outliers and thus to improvethe 
amera movement estimate. A method for image stabilization has also been proposed,whi
h is similar to the one in [122℄, but whi
h in
ludes the zoom fa
tor into the equations forthe viewing window position, thereby improving its performan
e in 
ase of zoom movements.The 
amera movement estimation algorithm based on the Hough transform and the imagestabilization algorithm have been shown to perform quite well by using several sequen
es withand without 
amera movement. This last Hough transform-based 
amera movement estimationalgorithm was also shown to perform quite well as a s
ene 
ut dete
tor.
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Figure 5.15: \Foreman": PSNR between ea
h pair of su

essive images. The peaks at images156, 191, and 192 are due to the non-dete
tion of 
amera movement at those images, whi
hleads to a reset of the viewing window position. PSNR without stabilization, dotted line,with stabilization saturated viewing window position, broken line, with stabilization and nosaturation of window position, solid line.
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Figure 5.16: \Carphone": PSNR between ea
h pair of su

essive images. PSNR without sta-bilization, dotted line, with stabilization saturated viewing window position, broken line, withstabilization and no saturation of window position, solid line.
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Chapter 6
Coding

\Ni
holas, I saw you wink at Elaine. What didyou tell her?" Ni
holas Negroponte
Visual information is usually obtained in an unstru
tured way, by a sampling and quantizationpro
ess. Several problems must be solved for e�e
tive transmission and/or storage of thisunstru
tured information. Firstly, it must be �t into a more stru
tured model, whose parametersrepresent the s
ene impli
it in the original unstru
tured data as faithfully as ne
essary. The
hoi
e of an appropriate model or models is 
alled modeling. Se
ondly, the parameters ofthe given model must be estimated. This estimation is 
alled analysis. Finally, the modelparameters must be en
oded, so as to a
hieve the typi
al goals of 
oding: high 
ompressionratio, high quality, low 
ost, and easy a

ess to the stru
tured 
ontent.A 
ode
 
ontains analysis blo
ks and en
oding blo
ks, as in Figure 2.1. The design of a 
om-plete 
ode
 en
ompasses 
hoosing appropriate models, building the analysis algorithms, and
onstru
ting appropriate en
oding methods. Analysis has been dealt with in the previous
hapters. This 
hapter proposes en
oding methods. Se
tion 6.1 presents a 
amera movementen
oding method for 
lassi
al 
ode
s (a transition to se
ond-generation tool), and Se
tion 6.2dis
usses a taxonomy of partition types and representations whi
h will be used in Se
tion 6.3 tooverview possible partition 
oding te
hniques. Finally, Se
tion 6.4 develops a fast 
ubi
 splineimplementation method with appli
ations on parametri
 
urve partition 
oding.
6.1 Camera movement 
ompensation
The development of 
amera movement dete
tion and estimation algorithms in [129, 127, 130,128, 113, 122℄ led to a proposal for 
amera movement 
ompensation in 
lassi
al, �rst-generation225
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ode
s. In parti
ular, a proposal was made for the extension of the H.261 standard whi
hwould take into a

ount 
amera movements with minimum syntax 
hanges. This proposal waspublished in [122℄, and is des
ribed brie
y in this se
tion.It should be noti
ed that the ideas herewith presented 
an be applied without 
hange to othervideo 
oding standards, su
h as H.263, MPEG-1, MPEG-2, and MPEG-4.This se
tion is divided in four parts. The �rst studies natural ways to quantize the zoom fa
tor,whi
h should be of generi
 use. The se
ond presents the proposed H.261 extensions. The thirdpart des
ribes how an en
oder may make use of the proposed extensions. The fourth and lastpart presents some results and dis
usses them.
6.1.1 Quantizing 
amera motion fa
torsQuantization is the pro
ess by whi
h a 
ontinuous quantity is rendered dis
rete for storing ortransmission. The zoom fa
tor estimated by the algorithms in Chapter 5, equation (5.9), is arational quantity. In all pra
ti
al 
ases, it will already be \quantized" to �t into some �xedlength 
oating point register. It is ne
essary to further quantize it so that it 
an be eÆ
ientlyen
oded.Sin
e most sequen
es do not have zoom and H.261 uses motion ve
tors dete
ted at pixel level,it seems reasonable to round the pan fa
tor 
omponents to integers. Besides, no movementslarger than 15 pixels per MB are possible, as spe
i�ed in the H.261 re
ommendation. So thequantization of the pan fa
tor 
omponents, whi
h are given by (5.10) and (5.11), is based simplyon rounding to the nearest integer and limiting the result to the interval [�15; 15℄. This resultsin �ve bits en
oding with a FLC (Fixed Length Code).As to the zoom fa
tor, it is assumed that the largest and smallest zooms allowed are the onesleading to -15 or 15 of either motion ve
tor 
oordinates, 
al
ulated a

ording to (5.4), in one ofthe MBs at the border of the image. This leads, after some simple 
al
ulations, to the followinglimits: (�15=168 � z � 15=168 for CIF, and�15=80 � z � 15=80 for QCIF.Noti
e that the maximum allowable zoom is larger in QCIF than in CIF, be
ause the QCIFpixels are also larger than the 
orresponding ones in CIF.Within the limits presented above for z, there is a �nite number of distin
t motion ve
tor pat-terns in the rounded motion ve
tor �eld �Mb[m;n℄(z; d) for any given d. Ea
h of these patternsmay be 
lassi�ed by an integer number, thus resulting in a natural quantization 
hara
teristi
for z. The boundary values of z where the motion ve
tor pattern 
hanges have been 
al
ulatednumeri
ally. The results are presented in Figure 6.1 in the form of a quantization 
hara
teristi
for z with 135 quantization levels for CIF resolution|8 bit en
oding with a FLC|and 79 levelsfor QCIF resolution|7 bits with FLC.Noti
e that several of the values for z around zero 
orrespond to almost all motion ve
tors ofzero length, ex
ept for a few on the boundaries of the image having small amplitudes. As su
h,
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z [�80℄
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(a) QCIF.

z [�168℄
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140120100806040200
(b) CIF.

Figure 6.1: The quantization 
hara
teristi
s of the zoom fa
tor z.
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it makes sense to in
lude a dead zone in the z quantization 
hara
teristi
. This may redu
e thenumber of quantization levels below 129, thus allowing for a seven bit FLC for the quantizedzoom fa
tor for CIF images.It should be noti
ed that similar quantization 
hara
teristi
s may be obtained for di�erent imagesizes, di�erent maximum values of the 
orresponding motion ve
tor �eld, and even if half- orquarter-pixel (or any fra
tion of the pixel, for that matter) motion ve
tors are admissible formotion 
ompensation. The presented 
hara
teristi
 was developed with the H.261 extension inmind.
6.1.2 Extensions to the H.261 re
ommendationThe extensions of the H.261 re
ommendation so as to provide means for 
amera motion 
om-pensation are of two types: synta
ti
al and semanti
al. The former 
hanges are small, but thelatter ones are more substantial. Both will be addressed below.
Synta
ti
al extensionsThe ne
essary synta
ti
al extensions to the H.261 re
ommendation [62℄ are few:1. Bit 5 of the PTYPE (Pi
ture Type) means: 0 no 
amera movement is used, 1 
ameramovement is used.2. When there is 
amera movement, the �rst three PEI (Pi
ture Extra Insertion Information)bits will be set to 1 and PSPARE (Pi
ture Spare Information) will 
ontain the pan andzoom fa
tors:First byteHorizontal 
omponent of pan fa
tor (�ve bits).Se
ond byteVerti
al 
omponent of pan fa
tor (�ve bits).Third byteQuantized zoom fa
tor (eight bits).The previous 
hanges imply that 
amera movement 
ompensated image will have an overheadof 27 bits. Appropriate VLCs (Variable Length Codes) for the pan and zoom fa
tors may bedeveloped in order to redu
e this small overhead.These extensions make use of reserved bits in the H.261 re
ommendation, and thus are totally
ompatible with existing H.261 
ompliant en
oders and de
oders.
Semanti
al extensionsThe semanti
al extensions to the H.261 re
ommendation are the following:
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1. Let there be a rounded 
amera movement motion ve
tor �eld generated from the trans-mitted quantized pan and zoom fa
tors, a

ording to (5.5).2. When there is 
amera movement present (�fth bit of PTYPE), the following interpreta-tions will apply to inter MBs:� A MB is MC (Motion Compensated): this means that it is lo
al motion 
ompensated.Its MVD (Motion Ve
tor Data) is obtained from the MB ve
tor by subtra
ting theve
tor of the pre
eding MB or by subtra
ting the 
orresponding ve
tor of the rounded
amera movement ve
tor �eld if:(a) evaluating MVD for MBs 1, 12 and 23 (left edge of GOB (Group of Blo
ks));(b) evaluating MVD for MBs in whi
h MBA (Ma
roBlo
k Address) does not repre-sent a di�eren
e of 1; or(
) the MTYPE (Ma
roblo
k Type) of the previous MB was not MC.� A MB is not MC: this means that it is 
amera movement 
ompensated. It willbe 
ompensated using the 
orresponding motion ve
tor from the 
amera movementmotion ve
tor �eld.Thus, all MBs are predi
ted using the transmitted 
amera movement, ex
ept those with lo
almotion. But even these will make use of the 
amera movement motion ve
tor �eld by improvedpredi
tion of their motion ve
tors.Similar s
hemes may be used in other standards, su
h as H.263. In H.263, where the predi
tionof motion ve
tors is more involved and eÆ
ient than in H.261, the motion ve
tor of the 
ameramovement �eld may be used to obtain improved predi
tion.

6.1.3 En
oding 
ontrolGiven the extensions to the H.261 re
ommendation, there is still some information la
king abouthow to put them all to work in a fully fun
tional extended H.261 
ode
.A possible en
oding pro
edure extends the one proposed in RM8 (Referen
e Model 8) [21℄:
1. Take the 
urrent original image and the previous de
oded image and perform full-sear
hblo
k mat
hing motion estimation.2. From the results of the previous item dete
t whether or not there is 
amera movement,and estimate it if there is. If no 
amera movement was estimated, pro
eed as in RM8. If
amera movement was estimated, build a rounded 
amera movement motion ve
tor �eldfrom the dete
ted pan and zoom fa
tors, a

ording to (5.5).3. Classify ea
h MB as in RM8, ex
ept that non-motion 
ompensated MBs should be pre-di
ted using the 
orresponding 
amera movement motion ve
tor. Smoothing, as des
ribedin the previous 
hapter, may be used in motion 
ompensated MBs to approximate the
orresponding motion ve
tor to the 
amera movement motion ve
tor or to the pre
edingMB motion ve
tor, whi
hever is more appropriate. This redu
es the number of bits spent
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transmitting motion ve
tors, though the predi
tion error may in
rease in a 
ontrolledfashion.4. Pro
eed as in RM8, but en
ode a

ording to the semanti
al extensions proposed.

6.1.4 Results and 
on
lusionsCamera movement 
ompensation, as presented, aims essentially at the redu
tion of redundan
yin the �eld of motion ve
tors. This is somewhat misleading, �rstly be
ause H.261 already
odes the motion ve
tors in a DPCM (Di�erential Pulse Code Modulation) way whi
h removespart of the �eld redundan
y, and se
ondly be
ause, for very low bitrates, sin
e some qualitydegradation must be a

epted, the motion ve
tor �eld shows little uniformity, parti
ularlyfor mobile sequen
es. Figure 6.2 shows a typi
al ve
tor �eld out of the sequen
e \Foreman"(en
oded by RM8 at 24 kbit/s and 5 Hz image rate and using QCIF resolution) where thisnon-uniformity 
an be 
learly seen.

Figure 6.2: Typi
al motion ve
tor pattern for \Foreman" at 24 kbit/s, 5 Hz image rate andQCIF resolution.The overall weight of the motion ve
tors in terms of spent bits per image, though larger forsmaller bitrates, is still small. For instan
e, using RM8 to en
ode the sequen
e \Foreman" at 24kbit/s, with an image rate of 5 Hz and using QCIF resolution, the average number of bits perimage spent en
oding motion ve
tors and DCT 
oeÆ
ients is, respe
tively, 690 and 2866. Themotion ve
tors a

ount only for about 20% of the total. This means that, even if substantialredu
tion in the former were obtained, the gains in terms of quality, for the same target bitrate,would be somewhat small.Two experiments will help to 
larify matters. In the �rst, an ordinary RM8 
oder was used.In the se
ond, a modi�ed 
oder whi
h, when performing bitrate 
ontrol, assumes that motionve
tors are transmitted \magi
ally", i.e., without spending any bits. Both experiments wereperformed though the en
oding of \Foreman" with a target of 24 kbit/s, using 5 Hz image rate
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and at QCIF resolution. The resulting average luma PSNR obtained was respe
tively 23:94 dBand 24:38 dB. The gains in PSNR 
an be seen to be small. Using a realisti
 
amera movement
ompensation approa
h, one whi
h results in a
tual bits being spent, the results will for
ibly beworst: an average PSNR of 24:01 dB was obtained using the 
amera movement 
ompensationmethod proposed before. For this experiment, the average number of bits per image spenten
oding the motion ve
tors and the DCT 
oeÆ
ients was, respe
tively, 649 and 2916. Thetransfer of bits from motion ve
tor to DCT 
oeÆ
ients is small due to the non-uniformities ofthe motion ve
tor �eld, whi
h redu
es the gain of 
amera movement 
ompensation.One way to attempt to solve the non-uniformity problem is through the use of smoothing.However, sin
e smoothing introdu
es larger predi
tion errors, some, if not more, of the bitsspared transmitting the motion ve
tors will be wasted 
ompensating this worst predi
tion. Afterexperimenting 
amera movement 
ompensation with smoothing under the same 
onditions asbefore, an average luma PSNR of 23:99 dB was obtained, showing a little loss in terms ofobje
tive quality. In this 
ase the bit distribution obtained was 607 for motion ve
tors and 2966for DCT 
oeÆ
ients.The results, though obtained for the H.261 standard, are expe
ted to be valid also in moremodern standards as H.263 and MPEG-4. This does not mean that the 
amera movement isuseless in video 
oding. Its importan
e, as well as the importan
e of the s
ene 
ut dete
tion,are 
onsiderable, for instan
e, if metadata is to be extra
ted from the sequen
es, i.e., if \dataabout the data" is ne
essary. This seems to be the 
ase in video database indexing appli
ations.
6.2 Taxonomy of partition types and representations
Image analysis algorithms usually produ
e partitions of the s
enes into 2D (or 3D) regions.These partitions usually have to be 
oded during the image and video representation pro
ess.It has been re
ognized that partition information will a

ount for a signi�
ant per
entage of thebit stream (e.g., [61℄). It is thus very important to develop eÆ
ient partition 
oding te
hniques.The 
omparison of te
hniques proposed in the literature has often been haunted by the la
k ofsystematization of the subje
t. This se
tion attempts to �ll this gap by proposing a taxonomyof partition types and representations. The proposals made in this se
tion and the overview
ontained in Se
tion 6.3 have already been published in [120, 121℄, and stem from preliminarywork published in [31℄.The two main levels of the taxonomy, partition type and partition representation, 
an be seen to
orrespond to the �rst steps taken when developing a partition 
oding te
hnique: the identi�
a-tion of the problem to be solved 
orresponds to the identi�
ation of the partition type addressedby the 
oding te
hnique, and the sele
tion of the partition representation 
orresponds to se-le
ting the kind of data the 
oding te
hnique will manipulate. Thus, di�erent representations,usually leading to di�erent te
hniques, 
an be used for the same type of partitions.During the des
ription of the taxonomy tree levels, square bra
kets will be used to spe
ify the
odes representing the possible bran
hes at ea
h tree node.
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6.2.1 Partition typeThe partition types 
an be organized in a tree with the following levels:

1. Spa
eAre partitions 2D [2D℄ or 3D [3D℄?2. Latti
eWhat sort of sampling latti
e was used for digitizing the images from whi
h the partitionswere obtained (e.g., re
tangular [R℄ or hexagonal [H℄)?3. GraphWhat kind of graph is super-imposed on the partition (usually a neighborhood system isspe
i�ed [Nn℄)?4. ClassesAre partitions binary [B℄ or mosai
 [M℄?5. Conne
tivityAre the 
lasses 
onne
ted [C℄ or 
an they be dis
onne
ted [D℄ (on the 
hosen image graph)?
Figure 6.3 shows the partition type levels of the taxonomy tree. The leaves of the taxonomy tree
orrespond to di�erent types of partition. Ea
h type of partition 
an be spe
i�ed by answeringthe �ve questions listed above. For instan
e, the following answers: 1. 2D [2D℄, 2. hexagonal[H℄, 3. 6-neighborhood [N6℄, 4. mosai
 [M℄, and 5. 
onne
ted [C℄, (or, with 
odes, 2DHN6MC);de�ne a type of partitions that lie in a 2D spa
e, that 
orrespond to digital images sampleda

ording to an hexagonal latti
e, that are stru
tured a

ording to the hexagonal graph, that
an have more than two 
lasses, and where all 
lasses are 
onne
ted (the 
on
epts of 
lass andregion are equivalent in this 
ase).Noti
e that the bran
hes under \3D" in the �gure are not drawn, sin
e 2D partitions are thefo
us of this se
tion. At the partition representation level, however, 3D partitions will be
onsidered in more detail (see the next se
tion).
6.2.2 Partition representationThis se
tion introdu
es more levels of detail into the taxonomy tree, related with the represen-tation 
hosen for the partitions. 2D and 3D partitions will be dealt with separately.
2D partitionsThe �rst important de
ision to be made regards mosai
 partitions:

1. HandlingShould the mosai
 partitions be handled as su
h (a single mosai
 partition) [M℄ or should
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onne
tivity:(
onne
ted ordis
onne
ted)


lasses:(binary ormosai
)

graph:(Nn)
latti
e:(re
tangular orhexagonal)

spa
e:(2D or 3D)

2DHN6B
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2DRN8M
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C D C D C D C D C D C D
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2DHN6MC
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Figure 6.3: The partition type taxonomy tree (in bold, the example given in the text). 
 standsfor either C (
onne
ted 
lasses) or D (dis
onne
ted 
lasses).
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they be separated into a 
olle
tion of binary partitions (ea
h one 
orresponding to adi�erent 
lass in the original mosai
 partition) [B℄?

As will be dis
ussed later, the handling of mosai
 partitions as 
olle
tions of binary partitionsis often of paramount importan
e. For instan
e, when 
lasses should be readily a

essible fromthe 
oded bit stream, a 
olle
tion of binary partitions may allow an easier a

ess to the variousobje
ts in a s
ene than the original mosai
 partition.It has been seen that a partition 
an be represented in two di�erent ways: either by the labelsof ea
h pixel, or by 
ontour information plus region-
lass information.1 When 
lass equivalen
eis the aim, the latter representation provides information about the 
lustering of regions into a
ertain number of 
lasses.Hen
e, the next level in the taxonomy will be:
2. HowHow should the partition be represented? With pixel labels [L℄ or with 
ontours [C℄?

For the 
ase of partitions represented with 
ontours, other 
hoi
es have to be made: How torepresent the 
ontours? What sort of neighborhood system has the 
ontour graph? Thesequestions lead to two other levels of partition representation in the taxonomy tree:
3. WhereWhere should 
ontours be de�ned? On the image graph or on the line graph? That is,should the 
ontour be de�ned on pixels [P℄ or on edges [E℄?4. GraphWhat is the kind of neighborhood system of the graph from whi
h the 
ontour is a sub-graph [Nn℄?

Figure 6.4 shows the partition representation levels of the taxonomy tree for the 2D 
ase.The 2DHN6M
 partition type with a representation separated into binary 
lass partitions, using
ontours de�ned on edges, whi
h have a N3 neighborhood system, is 
oded as 2DHN6M
-BCEN3or:
Partition type2D, hexagonal latti
e, N6 graph, mosai
, 
lasses 
onne
ted or dis
onne
ted a

ording towhether 
 is C or D.Partition representationMosai
 treated as independent binary partitions, 
ontours, edges, N3 graph.1Similarly, [38℄ divides shape representation methods into boundary-based, and area-based.
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partitiontype:
handling:(binary ormosai
)

2DHN6M


where:(pixels oredges)
graph:(Nn)
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2DHN6M
-BCEN3
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Figure 6.4: The partition representation taxonomy tree for the 2D 
ase (in bold, the examplegiven in the text). 
 stands for either C (
onne
ted 
lasses) or D (dis
onne
ted 
lasses).
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3D partitionsAs 
an be seen in Figure 6.5, for 3D partitions two representations may be 
onsidered: sti
kto three dimensions [3D℄, or sli
e the partition along the time domain and use 2D methods[2D℄. Predi
tion of the 2D partition sli
es 
an be used [Inter℄, otherwise the 2D partitionsare 
onsidered independent [Intra℄. When predi
tion is used, it may [M℄ or may not [F℄ usemotion 
ompensation (the 'M' stands for \motion" while the 'F' stands for \�xed"). Themotion information may be either estimated from the 3D partition [61℄ or input from externalsour
es (e.g., from a motion estimator working with the original 3D image). Noti
e that thesli
ing to two dimensions establishes a 
onne
tion to one of the 2D bran
hes at the top ofthe representation taxonomy shown in Figure 6.4, depending on the type of the resulting 2D(possibly predi
ted) partitions. from the leaves of the 3D bran
hof the type taxonomy tree

approa
h:(3D or 2D)
predi
tion:(intra orinter)

ompensation:(motion 
ompensatedor �xed) to top of 2D representationtaxonomy

3D 2D

FM
intra inter

Figure 6.5: The partition representation taxonomy tree for the 3D 
ase.
6.2.3 Representation propertiesChoosing the representation for the partitions (of a given type) depends on the properties ofea
h representation and how adequate they are for the task at hand. Pros and 
ons relatedwith some of the levels of the 2D partition representation taxonomy tree are listed below:
� Handling (only for mosai
 partitions):Mosai
A single 
onne
ted 
ontour graph 
an separate several regions, whi
h leads to 
oding
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eÆ
ien
y when a 
ontour representation is used; however, a

ess to a single 
lassshape is not easy, sin
e the regions (and 
lasses) are not represented individually.BinaryThe 
lasses are represented independently, and thus easy a

ess to ea
h 
lass isprovided, though at the expense of less eÆ
ient 
oding eÆ
ien
y.� How:LabelsIn this 
ase, the identi�
ation of the 
lass to whi
h ea
h pixel in the partition belongsis very simple, though the shapes of the 
lasses are not dire
tly represented.ContoursThe shapes of the 
lasses are dire
tly represented, albeit at the expense of requiringsomewhat involved algorithms to as
ertain the 
lass of a given pixel [155, 182, 6℄.� Where:PixelsRepresenting 
ontours on pixels poses a number of problems, espe
ially in the 
ase ofmosai
 partitions, sin
e using all border pixels leads to unne
essary repetition at bothsides of a border; when the problem is avoided by using only one side of ea
h border,other problems arise: e.g., how should one pixel wide regions or parts of regionsbe distinguished from borders of thi
k regions. Although the problems asso
iatedwith these representations have solutions, often somewhat involved, 
oding 
ontourson pixels does not seem to a
hieve higher 
ompression than 
oding 
ontours onedges [31℄.EdgesThis is usually a more elegant way of representing 
ontours, whi
h in addition typi-
ally provides more 
ompression than pixel based 
ontours [31℄.

6.3 Overview of partition 
oding te
hniques
On
e the type of partitions to 
ode has been as
ertained and a partition representation sele
ted,a

ording to the taxonomy de�ned in the previous se
tion, there are usually a number of avail-able 
oding te
hniques. This se
tion overviews some of these te
hniques. Spe
ial attention willbe payed to 2D partitions.
6.3.1 Lossless or lossy 
odingThe question of whether to use lossy partition 
oding te
hniques is an important one. Itis true that some te
hniques that are inherently lossy, su
h as parametri
 
urves, 
an yieldgood 
ompression [73℄. However, it may be diÆ
ult, for some appli
ations, to establish soundpartition 
oding quality 
riteria. Also, when the s
ene obje
ts (
orresponding possibly to 
lasses
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or sets of 
lasses) are to be manipulated individually, e.g., pasting an obje
t into a di�erents
ene, the e�e
ts of lossy partition 
oding 
an be very important, sin
e pie
es of the real obje
tmay be lost, pie
es of the ba
kground 
an be introdu
ed, and even obje
t deformation mayo

ur. This seems to indi
ate that lossless partition 
oding te
hniques are preferable, andthat simpli�
ations should be introdu
ed into the partitions 
arefully during the segmentationpro
ess, before partition 
oding.However, if lossy 
oding is a

eptable, the losses are usually 
onstrained so that there is:

1. 
lass topologi
al equivalen
e, i.e., the 
lasses should be maintained in number and adja-
en
y relations|the CAG should not be altered (a stronger 
onstraint 
an be imposed ifthe RAG, or even the RAMG, is not allowed to 
hange); and/or2. small displa
ement of borders, i.e., the borders between the regions should 
hange aslittle as possible, a

ording to some error 
riterion (other 
onstraints may be imposed, forinstan
e on errors asso
iated with the area and position of the regions).
6.3.2 Mosai
 vs. binary partitionsWhen easy a

ess to the 
ontents of the video sequen
e is required, the shapes of the variousobje
ts (e.g., a 
lass or a set of 
lasses in a partition) will have to be 
oded independently. Thisrequirement 
an be imposed even if the segmentation pro
ess resulted in a mosai
 partition,redu
ing the problem to the 
oding of a series of binary partitions (see the handling level inFigure 6.4).The independent 
oding of binary partitions also arises naturally when a layered s
ene represen-tation, as proposed by Wang and Adelson [195℄, is used. Layered representations of the s
enesare also used in MPEG-4 [77℄: ea
h layer 
orresponds to a 2D obje
t of arbitrary shape, whosetime snapshots are 
alled VOP (Video Obje
t Plane). The shape of the obje
ts representedby VOPs 
an be asso
iated to binary partitions.2 However, if the 
ontent of the VOPs were
oded through region based te
hniques (as would happen if the Sesame [30℄ proposal had beenin
luded in MPEG-4), then mosai
 partitions would also be ne
essary within ea
h VOP.Thus, both 
oding of binary and mosai
 partitions may be important issues when easy a

essto the 
ontents of the video sequen
es is required.
6.3.3 Partition modelsThe 
oding eÆ
ien
y always depends on the 
hara
teristi
s of the partitions being 
oded. Mostof the te
hniques aim at generi
ness, though this is a somewhat hard to de�ne property. Bygeneri
ness it is often meant that the te
hniques perform well on average. The problem withthis de�nition is that often little is known about the statisti
s of the partitions whi
h need to be2A
tually the shapes of the VOPs 
an be spe
i�ed in MPEG-4 using \binary shape," i.e., a binary partition,or \grey s
ale shape," whi
h is an alpha plane spe
ifying the transparen
y of ea
h pixel.
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oded. This is a general problem in image pro
essing: is there a statisti
al model for the imagesto pro
ess? In the 
ase of partition 
oding, the statisti
al 
hara
terization of input partitionsdepends both on the original images and on the segmentation algorithm used upstream. Hen
e,most te
hniques do not address a spe
i�
 model of input partitions, making only some generalassumptions su
h as:3

1. the regions tend to 
ontain a signi�
ant amount of pixels, i.e., small regions are improbable;2. the 
lasses tend to 
ontain a small amount of regions;3. the 
ontours (borders between regions) tend to be simple (not ragged); and4. the region interiors tend not to 
ontain too many small holes.
6.3.4 Class 
odingClass 
oding is ne
essary when:

1. 
lass equivalen
e is enough;2. the partitions used have dis
onne
ted 
lasses (see 
onne
tivity level in Figure 6.3); and3. the expli
it labels of the partition pixels have not (yet) been 
oded (it is the 
ase after
ontour 
oding te
hniques and some label 
oding te
hniques).
The obje
tive of 
lass 
oding is to establish whi
h regions are grouped in the same 
lass. Thisissue will not be dis
ussed at length here. However, note that the 
oding methods used shouldtake into a

ount that:

1. the expli
it 
lass labels are not required, sin
e 
lass equivalen
e is enough; and2. adja
ent regions 
annot belong to the same 
lass, for otherwise they would be a singleregion (this 
an help redu
e the amount of data to transmit).
If partition equality is required, then the 
lass labels should be 
oded expli
itly for ea
h region inthe partition. When the 
lasses are 
onne
ted, the fa
t that a given label appears only on
e 
anbe used to redu
e the amount of data to transmit, sin
e the degrees of freedom keep redu
inguntil zero when the next-to-last label is transmitted.
6.3.5 Label 
odingLabel 
oding te
hniques 
ode partitions whose representation is based on pixel labels. The 
asesof binary and mosai
 partitions will be addressed separately in the following.3See for instan
e Chapter 10 of [68℄.
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Binary partitions
Binary partitions 
an be seen as binary (or two-tone) images. Therefore, the te
hniques availablefor 
oding binary images are good 
andidates for 
oding binary partitions. While losslesste
hniques 
an be applied without any problems, lossy te
hniques often do pose some problems,sin
e the type of losses they allow does not generally take into a

ount the 
onstraints typi
allyused for lossy partition 
oding.Reviews on binary image 
oding 
an be found in [90, 74℄ and, spe
i�
ally for fax, in [76℄. Thelossless 
oding standards ITU-T T.4 and T.6 (Group 3 and Group 4 fa
simile) [45, 46℄ andITU-T T.82 JBIG [82℄ use te
hniques with in
reasing 
ompression eÆ
ien
y:
T.4 uses one-dimensional RLE (Run-Length En
oding) and, optionally, also the 2D MREAD(Modi�ed Relative Element Address Designate) 
odes, both followed by VLC. In the 2Dmode, ea
h k line is 
oded with RLE (k is set to 2 for low resolution images and to 4 forhigh resolution images), while all the other lines are 
oded with MREAD.
T.6 is similar to ITU-T T.4, though the 2D mode is always used and k is set to in�nite, so thatonly MREAD is used. The resulting 
odes are 
alled MMREAD (Modi�ed MREAD).
T.82 uses the arithmeti
 Q-Coder [159℄ to 
ode the pixel values. The probabilities for theQ-Coder are estimated using a lo
al 
ontext (a template) for the 
urrent pixel. Sin
eJBIG uses resolution layers for progressive 
oding, two types of templates exist: the �rstis used in the lowest resolution layer and in
ludes only pixels already transmitted in thatlayer, while the se
ond is used for all the other layers and in
ludes not only pixels fromthe 
urrent layer but also from the layer immediately below in resolution.
A te
hnique based on a modi�ed MMREAD 
ode, on 16 � 16 blo
ks, has been proposed forthe 
oding of binary alpha maps in the framework of MPEG-4 [188℄. This te
hnique hasbeen adopted in VM3 [2℄ after a round of 
ore experiments on binary shape 
oding [140℄. Twote
hniques with relations to JBIG [11, 12℄ have also been evaluated during the 
ore experiments.Both use arithmeti
 
odes with probabilities estimated from a lo
al 
ontext around the pixel tobe 
oded. The te
hnique whi
h was later approved for in
lusion in the MPEG-4 CD (CommitteeDraft) [77℄ is of this latter type.Among all the other te
hniques that have been proposed for binary partition 
oding, mor-phologi
al skeletons [103℄ (and more re
ently [83℄) are espe
ially relevant, mainly be
ause thiste
hnique has evolved lately to eÆ
iently 
over also mosai
 partitions [14℄. This te
hnique rep-resents the shape of a region by a set of skeleton points and a so-
alled quen
h fun
tion: theregion is the union of stru
turing elements (of a 
ertain shape) 
entered on the skeleton pointsand s
aled a

ording to the value of the quen
h fun
tion at that point.Sin
e binary partitions are a spe
ial 
ase of mosai
 partitions, te
hniques developed for thelatter may also be applied to the former, either dire
tly or with simplifying 
hanges, despite thefa
t that they do not take into a

ount the spe
ial 
hara
teristi
s of binary partitions.
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Mosai
 partitions
The 
ase of mosai
 partitions is more 
omplex. The 
oding of mosai
 partitions has re
eivedless attention than the 
oding of binary partitions (however, see [14, 13, 191℄). It is possible,nevertheless, to use binary partition 
oding te
hniques by �rst 
onverting the mosai
 partitionsinto bit planes. For instan
e, using the FCT (see Se
tion 3.4.3), the regions in a partition
an be perfe
tly identi�ed by painting them with only four 
olors. Hen
e, ea
h region 
an beidenti�ed by a two-bit label, and thus two bit-planes are suÆ
ient for representing the partition.Ea
h of the two bit-planes 
an be 
oded independently using (lossless) binary partition 
odingte
hniques. Noti
e that some borders are present in both bit-planes, so this method 
annotyield optimal results.A te
hnique using the 
on
ept of geodesi
 skeleton, where the regions are des
ribed by a set ofskeleton points and a quen
h fun
tion [14℄, was re
ently proposed. This te
hnique is, in a sense,an extension of the te
hnique proposed in [103℄ for binary partitions. The authors 
laim that\the geodesi
 skeleton is preferable to 
hain 
ode whenever there are many isolated and short
ontour ar
s to be 
oded," whi
h seems to be the 
ase when 3D...-2DInterM (motion predi
ted2D partitions 
orresponding to time sli
es of a 3D partition) partition representations are used.A method whi
h is also related to geodesi
 skeletons has been proposed in [191, 171℄. It rep-resents regions as a union of stru
turing elements with appropriate translations and s
alings.Both te
hniques ([14, 191℄) allow the stru
turing elements to overlap already 
oded regions,thus avoiding dupli
ate 
oding of borders and redu
ing the required bitrate. Both te
hniquesare lossy and, again, 
an be used for mosai
 and binary partitions. In
identally, it may benoted here that the problem of �nding the minimum number of re
tangles 
overing a given setof elements in a matrix 
an be show to be NP-
omplete, see [51, SR25, p.232℄.Another interesting te
hnique, based on Johnson-Mehl tessellations, has been proposed in [13℄(whi
h 
ontains a good review of partition 
oding te
hniques). The idea is to �nd germs (andtheir germinating time) for ea
h region su
h that the original partition is reprodu
ed well whenthe germs are allowed to grow until rea
hing other growing germs. Though the te
hniqueproposed is lossy, it 
an easily be made lossless. A

ording to the authors, the te
hniqueperformed worse than the other te
hniques studied (straight line and polygonal approximation,
hain 
odes, and geodesi
 skeletons).
6.3.6 Contour 
oding
At least three breeds of 
ontour 
oding te
hniques 
an be distinguished:
Chain 
odesThe 
ontour graph is 
oded by a string of symbols representing the dire
tion of the \
hain"
onne
ting a vertex to the next vertex on the 
ontour. Ea
h of these strings is 
alled a
hain 
ode. Symbols may also represent dire
tion 
hanges, whi
h makes the 
hain 
odesdi�erential.
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Parametri
 
urvesThe 
ontours are approximated by parametri
 
urves, whose 
oeÆ
ients are then 
oded;the most 
ommon examples are approximations by straight lines and by splines (in general,by polynomials).Transform 
odesThe 
ontours are represented as parametri
 
urves whi
h are 
oded using transform meth-ods, in a one-dimensional equivalent of transform 
oding for images.
All these te
hniques involve two steps: �rst the representation is 
hanged by transformingthe 
ontours into strings of symbols (e.g., 
hanges in 
hain dire
tion, spline parameters, 
ontrolpoints or transform 
oeÆ
ients|possibly quantized) and then these symbols are entropy 
oded.For 
ontours de�ned on pixels, it is also possible to use te
hniques developed for binary image
oding. The idea is to paint bla
k, against a white ba
kground, all the border pixels in thepartition and then use one of the binary label 
oding te
hniques already dis
ussed. Noti
e,however, that lossless te
hniques should in general be used, sin
e lossy te
hniques were notusually developed with partition 
oding in mind.
Chain 
odes
The 
ontour graph is a subgraph of either the line graph (for 
ontours de�ned on edges) or theimage graph (for 
ontours de�ned on pixels), and usually 
onsists of a 
olle
tion of trails on theoriginal graph. Ea
h 
ontour trail 
an thus be represented by a string of symbols representingwhi
h of the neighbors of the 
urrent graph vertex belongs to the 
ontour trail or, whi
h is thesame, the dire
tion of the \
hain" 
onne
ting it to the next vertex on the 
ontour trail: thesestrings are 
alled 
hain 
odes [49, 50, 201℄. When the symbols represent dire
tion 
hanges, the
hain 
odes are said to be di�erential [42, 58℄. The simplest partitions are those for whi
h the
ontour graph is 
onstituted of dis
onne
ted 
losed trails.Binary partitions are generally simpler to 
ode than mosai
 partitions. The main di�eren
estems from the fa
t that, for binary partitions, all verti
es in the 
ontour graph (at leastfor edge 
ontours graphs) have an even number of neighbors: two verti
es for the N3 linegraph 
orresponding to the N6 image graph (used for hexagonal sampling latti
es), and two orfour verti
es for the N4 line graph 
orresponding to the N4 image graph (used for re
tangularsampling latti
es). That is, the 
onne
ted 
omponents of su
h graphs have Euler trails, i.e.,they 
an be \drawn without lifting the pen
il".Mosai
 partitions with 
ontours de�ned on edges require spe
ial treatment, sin
e the existen
eof jun
tion verti
es (verti
es with degree 3, see Figure 3.12) pre
ludes the de�nition of 
ontoursas dis
onne
ted 
losed trails. There are at least two ways of dealing with this problem:

1. Ignore jun
tions and 
rossings. Sele
t one of the exits and leave the others for 
odingas separate 
ontours; sin
e initial 
ontour points are 
ostly to 
ode, this solution is notoptimal.
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2. Code jun
tions and 
rossings expli
itly [106℄. Sele
t one of the exits but 
ode also informa-tion about the jun
tion or 
rossing so that later one 
an \return" and 
ontinue followingthe remaining exits (one in the 
ase of a jun
tion, two in the 
ase of a 
rossing).

When jun
tions and 
rossings are expli
itly 
oded, or when retra
ing of 
ontour segments isallowed, the 
ompression obtained when 
oding a 
onne
ted 
omponent of a 
ontour dependsstrongly on the way the 
onne
ted 
omponent is followed: where to start, whi
h exit to follow�rst at ea
h jun
tion or 
rossing, et
. The problem of 
oding 
an then be seen as a problemof minimizing the bitrate given a 
ertain syntax of representation. This problem is similar toChinese postman problem, i.e., to the problem of making a line drawing without lifting thepen
il and minimizing the length of the redrawn lines, whi
h is solvable in polynomial time. Itssolution 
an be a

elerated if the drawing s
hedule is determined in the RBPG of the partitionwhere ea
h ar
 has an appropriate weight. The advantage stems from the fa
t that the RBPGhas a smaller number of verti
es and ar
s. Ea
h ar
 in the RBPG, whi
h 
orresponds to a
omplete border on the partition, should have a weight whi
h is proportional to the numberof bits required to en
ode it using 
hain 
odes. A rough approximation would be to makethe weight proportional to the number of edges in the border. Otherwise the weight might beestimated from statisti
s obtained of previous en
odings.When 
ontours are de�ned on pixels, the 
on
epts of jun
tion and 
rossing require a moreinvolved de�nition and treatment [101, 31℄. In the 
ase of binary partitions, the problem maybe solved by again ignoring the presen
e of verti
es of degree larger than two in the pixel 
ontourgraph. Another problem of 
ontours de�ned on pixels is posed by one pixel wide regions or partsof regions, whi
h make it diÆ
ult to use a stopping 
ondition as simple as \Stop when the initialvertex of the 
ontour is attained", whi
h is often used when 
oding 
ontours de�ned on edges.Su
h regions may also require the existen
e of a turning ba
k (180Æ) dire
tion in the 
hain 
odes,rarely used, whi
h may 
ause some VLCs to be ineÆ
ient (for instan
e Hu�man).4In general, 
hain 
odes 
orrespond to the spe
i�
ation of a subgraph, 
onsisting of a set of trails,in the underlying image or line graph. A 
ontour 
onne
ted 
omponent 
onsists of a set of trailslinked at jun
tions and 
rossings. Ea
h trail 
an be represented by:
1. a position for the �rst vertex of the trail, maybe impli
itly indi
ated in a previous 
rossingor jun
tion information; and2. a string of symbols, the 
hain 
odes, whi
h may in
lude 
rossings and jun
tions informa-tion.

Both the �rst vertex position and the 
hain 
odes are then entropy 
oded. The 
onstru
tion ofthe 
hain 
odes may also in
lude 
ontour simpli�
ation pro
edures.Several te
hniques have been proposed in the literature for entropy 
oding the initial verti
esand the 
hain 
odes:4Consider an alphabet 
onsisting of two symbols A and B with equal probabilities 0.5: the 
orrespondingHu�man 
ode will have one bit per symbol. If a third, improbable but possible, symbol C is added, and theprobabilities are p(A) = 0:495, p(B) = 0:495, p(C) = 0:01, the number of bits per 
ode word will be 1, 2, and 2,respe
tively. The average number of bits per symbol will be 1:505, 40% worst than the minimum of 1:071.
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1. zero order Hu�man and arithmeti
 
oding (adaptive or not) [133, 106℄, whi
h tend to beineÆ
ient, sin
e region borders are usually very di�erent from a Brownian random walkthrough the image or line graph;2. nth order Hu�man and arithmeti
 
oding (adaptive or not) [31, 133, 42℄;3. Ziv-Lempel (or Ziv-Lempel and Welsh) 
oding [202, 197℄, whi
h is a form of \di
tionary-based 
oding" [90℄; and4. run-length 
oding, whi
h groups 
hain 
odes into runs of related symbols [86, 133℄, usually
orresponding to straight line segments [93, 10, 133℄ (and hen
e 
onstituted either of asingle symbol or of two symbols, with adja
ent dire
tions, whi
h verify the 
onditionsde�ned by Rosenfeld in [173℄).In the framework of the MPEG-4 
ore experiments on binary shape 
oding [140℄, extensionsto basi
 or di�erential 
hain 
odes have been proposed. In [52, 140℄ a lossy multi-grid 
hain
ode is proposed whi
h, a

ording to the authors, redu
es by an average of 25% the 
oding
ost with respe
t to di�erential 
hain 
odes. In [196℄ a method is proposed whi
h de
omposesa (di�erential) 
hain 
ode into two 
hain 
odes with half the resolution, plus additional 
odesif lossless 
oding is desired.

Parametri
 
urvesThese te
hniques approximate 
ontours (or 
ontour segments) by parametri
 fun
tions, usuallypolynomials. The fun
tions 
an usually be represented by either a set of 
oeÆ
ients or a set of
ontrol points [175, 43℄. The 
oeÆ
ients or the 
oordinates of the 
ontrol points are quantizedand then entropy 
oded. Noti
e that when polynomials of degree one are used (with re
tangu-lar 
oordinates), the 
ontours are approximated by polygons. The use of 
ontrol points [152℄simpli�es the quantization pro
ess, sin
e it is simpler to 
ontrol the errors introdu
ed by quan-tizing the 
oordinates of 
ontrol points than the errors introdu
ed by quantizing the 
oeÆ
ientsof a polynomial. In the 
ase of mosai
 partitions, the 
rossings and jun
tions of 
ontours arefrequently sele
ted as 
ontrol points [43, 97℄.One of the most important problems in parametri
 
urve representation of 
ontours is error
ontrol. Iterative te
hniques are 
ommonly used whi
h su

essively split the 
ontour until asuÆ
iently small approximation error is obtained for ea
h resulting segment [43, 97℄. The erroris frequently 
al
ulated from the geometri
al distan
e between the parametri
 
urves and thereal 
ontours [97, 53℄, but some resear
hers propose the use of the 
ontrast a
ross the 
ontours,assuming it is available [43℄. Methods have also been proposed whi
h follow the split phase bya merge phase [157, 154℄. Su
h split & merge methods for polygonal approximation of 
ontourswere the pre
ursors of similar methods used later in image segmentation.When 
ontrol points are used, their di�eren
es along the 
ontour graph are usually entropy
oded. These methods deal with jun
tions and 
rossings in a very similar way to 
hain 
odingte
hniques.As part of the MPEG-4 
ore experiments on binary shape 
oding [140℄, parametri
 
urve te
h-niques have also been evaluated [53, 148, 89, 25℄ (some of these te
hniques stem from the
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earlier [73℄). These te
hniques approximate the 
ontours with polygons or splines using a setof 
ontrol points 
hosen again with a split algorithm. The sele
tion of whi
h approximationmethod to use is either done for ea
h 
ontour segment (between 
ontrol points) or for ea
h ob-je
t. The proposed te
hniques also take advantage of time redundan
y between 
ontrol pointsalong the su

essive partitions. One-dimensional transform 
oding methods, some of whi
hmulti-resolution, are proposed to 
ompensate the residual error between the parametri
 
urveapproximation and the a
tual 
ontours (see the next se
tion).

Transform 
odes
The 
ontours are represented �rst as parametri
 
urves taking values in R , if the 
ontour (or
ontour segment) being 
oded 
an be represented by a polar fun
tion 
entered somewhere in theimage, or in R 2 for other kinds of 
ontour (or 
ontour segments). These parametri
 
urves (stilla lossless representation) are then 
oded using transform methods [22℄, in a one-dimensionalequivalent of the transform 
oding used in image 
oding (e.g., DCT), i.e., the parametri
 
urvesare transformed and the resulting 
oeÆ
ients are quantized and entropy 
oded.Transform 
odes have also been under s
rutiny in the MPEG-4 
ore experiments on binaryshape 
oding [140℄, both for 
ontour 
oding proper and for 
oding the residual error after usingparametri
 
urve methods.The �rst te
hnique 
onsidered in the 
ore experiments uses a polar representation of the 
on-tour [24℄. The 
ontour is represented by a fun
tion of the polar angle, whose value is thedistan
e between the 
entroid and the 
ontour in the dire
tion de�ned by the angle.5 The one-dimensional DCT of the distan
e fun
tion is 
al
ulated and then its 
oeÆ
ients are quantizedand VLC 
oded. Some 
ontours 
annot be properly represented by a parametri
 fun
tion of thepolar angle (sin
e more than one 
ontour point may o

ur for a single angle). Hen
e, parts ofthe 
ontour may have to be left out. These parts are handled separately using 
hain 
odes. Thiste
hnique 
an also take advantage of the temporal redundan
y between su

essive partitions.The other transform 
oding te
hniques tested on the MPEG-4 
ore experiments use either theone-dimensional DST or DCT to 
ode not the 
ontour itself, but the residual error (distan
e)between a parametri
 
urve approximation and the a
tual 
ontour [148, 89, 25℄. In [25℄ thedistan
e between the approximate and a
tual 
ontours is 
al
ulated either horizontally or verti-
ally, depending on the slope of the line between the 
ontrol points of the 
ontour segment beingen
oded. This substantially redu
es the 
al
ulations relative to the usual orthogonal distan
emethod. In [148℄ a multi-resolution version of the DST is used, so as to provide 
ontour (obje
t)s
alability.

5The 
entroid is the point whose 
oordinates are the average of the 
oordinates of all the pixels in the regionen
losed by the 
ontour.
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6.4 A qui
k 
ubi
 spline implementation
Splines are a form of parametri
 approximation of 
ontours. In the framework of the COST211ter proje
t, the SIMOC1 referen
e model [39℄, made use of a mixture of polygonal and
ubi
 spline approximation [26℄ to the 
ontours of a binary partition (a 
hange dete
tionmask). Among several proposals made by the author related with that referen
e model,namely [116, 114, 79, 78℄, an improvement on the original spe
i�
ation of 
ubi
 splines anda fast implementation method are espe
ially relevant.The improvement stems from 
onsidering 
ontinuity of �rst and se
ond derivatives at all nodesof the spline, sin
e the spline is being used to approximate a 
losed 
urve (a 
ontour), given anumber of 
ontrol points. The determination of the spline 
oeÆ
ients is similar to the usual
ubi
 spline, ex
ept that the matrix whi
h needs to be inverted as part of the algorithm has atype of symmetry whi
h makes it suitable for eÆ
ient implementations.
6.4.1 2D 
losed spline de�nitionGiven a sequen
e of n 
ontrol points in R 2s0; s1; : : : ; sn�1, with sj = �xj yj�T ,the aim is to �nd n 
ubi
 polynomials Pj(t) = �pxj (t) pyj(t)�T from t 2 [j; j + 1[ (uniformparameterization) to R 2 , with j = 0; � � � ; n� 1, whi
h result in a smooth interpolation.To a
hieve the desired smoothness, the same set of 
onstraints (6.2) is imposed for ea
h 
om-ponent of the polynomials, pxj (�) and pyj(�), in the sequel referred to generi
ally as pj(�). Letalso fj be xj or yj a

ording to whether pj(�) = pxj (�) or pj(�) = pyj (�).Ea
h polynomial is de�ned by the four parameters aj , bj , 
j , and djpj(t) = aj + bj(t� j) + 
j(t� j)2 + dj(t� j)3 with j = 0; : : : ; n� 1. (6.1)
The 
onstraints impose 
ontinuity up to the se
ond derivative at ea
h node6pj(j) = fjpj(j + 1) = fj+1p0j(j + 1) = p0j+1(j + 1)p00j (j + 1) = p00j+1(j + 1) with j = 0; : : : ; n� 1, (6.2)
where j = j mod n and p0j(�) and p00j (�) are respe
tively the �rst and se
ond derivative of poly-nomial pj(�).From (6.1) it 
an be seen that 4n 
oeÆ
ients must be found by the spline algorithm, using the4n restri
tions given by (6.2).6Noti
e that the sele
ted restri
tions do not generally assure smoothness of the �nal 2D 
urve, only of theindividual parametri
 
urves!
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6.4.2 Determination of the spline 
oeÆ
ientsSubstituting (6.1) in (6.2), one obtainsaj = fjaj + bj + 
j + dj = fj+1bj + 2
j + 3dj = bj+12
j + 6dj = 2
j+1 with j = 0; : : : ; n� 1.
Simple algebrai
 manipulations (see [26℄) lead to the following solutionaj = fjdj = 
j+1�
j3bj = aj+1 � aj � 2
j+
j+13 with j = 0; : : : ; n� 1,
and 266666666664


0
1...
j...
n�2
n�1

377777777775
= A�1n 3

266666666664

a1 � 2a0 + an�1a2 � 2a1 + a0...aj+1 � 2aj + aj�1...an�1 � 2an�2 + an�3a0 � 2an�1 + an�2

377777777775
;

where An is the n� n matrix
An =

2666664
4 1 11 4 1. . .1 4 11 1 4

3777775 :
6.4.3 Approximate algorithmThe main part of the spline algorithm is the inversion of matrix An (n�n). If observed 
arefully,matrix An has a spe
ial kind of stru
ture, originated in the imposed spline restri
tions whi
htreat all nodes equally: ea
h line (
olumn) of An may be obtained by rotating the previous oneto the right (down), the last element of the line (
olumn) being rotated ba
k to the beginning.Another interesting 
hara
teristi
 of An is that ea
h line (
olumn) is symmetri
 around itsdiagonal element.It turns out, as 
an be proved analyti
ally, that the inverse of An has exa
tly the same stru
ture.This means that A�1n 
an be 
onstru
ted from the knowledge of the �rst half of its �rst line,viz. n===2 + 1 elements where === stands for trun
ating integer division. Let those elements



248 CHAPTER 6. CODINGi0 1 2 3 4 53 0.2777777778 -0.05555555564 0.2916666667 -0.0833333333 0.04166666675 0.2878787879 -0.0757575758 0.01515151526 0.2888888889 -0.0777777778 0.0222222222 -0.01111111117 0.2886178862 -0.0772357724 0.0203252033 -0.0040650407n 8 0.2886904762 -0.0773809524 0.0208333333 -0.0059523810 0.00297619059 0.2886710240 -0.0773420479 0.0206971678 -0.0054466231 0.001089324610 0.2886762360 -0.0773524721 0.0207336523 -0.0055821372 0.0015948963 -0.000797448211 0.2886748395 -0.0773496789 0.0207238762 -0.0055458260 0.0014594279 -0.000291885612 0.2886752137 -0.0773504274 0.0207264957 -0.0055555556 0.0014957265 -0.000427350413 0.2886751134 -0.0773502268 0.0207257938 -0.0055529485 0.0014860003 -0.0003910527
Table 6.1: The �rst 6 qi(n) for n = 3; : : : ; 13.

be q0(n); : : : ; qn===2(n) (the value of the elements depends on n, of 
ourse). Table 6.1 showsthe evolution of these elements. Noti
e that it is assumed that n � 3, sin
e n = 1 and n = 2
ondu
e to degenerate splines. Noti
e also that, for i � 2, element qi(n) only exists if 2i � n.An example may 
larify the stru
ture of the matri
es. Suppose the inverse of A6 is to be
al
ulated. The �rst step is to 
opy the elements in row 6 of Table 6.1 to the �rst half of the�rst line of A�16
A�16 =

26666664
0:28889 �0:07778 0:02222 �0:01111 37777775 :

The se
ond step is to re
e
t the elements of the �rst line around the diagonal element
A�16 =

26666664
0:28889 �0:07778 0:02222 �0:01111 0:02222 �0:07778 37777775 :

Finally, the remaining lines are �lled by su

essive rotation of the �rst line
A�16 =

26666664
0:28889 �0:07778 0:02222 �0:01111 0:02222 �0:07778�0:07778 0:28889 �0:07778 0:02222 �0:01111 0:022220:02222 �0:07778 0:28889 �0:07778 0:02222 �0:01111�0:01111 0:02222 �0:07778 0:28889 �0:07778 0:022220:02222 �0:01111 0:02222 �0:07778 0:28889 �0:07778�0:07778 0:02222 �0:01111 0:02222 �0:07778 0:28889

37777775 :



6.4. A QUICK CUBIC SPLINE IMPLEMENTATION 249i0 1 2 33 0.2777777778 -0.05555555564 0.2916666667 -0.0833333333 0.04166666675 0.2878787879 -0.0757575758 0.01515151526 0.2888888889 -0.0777777778 0.0222222222 -0.01111111117 0.2886762360 -0.0773524721 0.0207336523 -0.0055821372n 8 0.2886762360 -0.0773524721 0.0207336523 -0.00558213729 0.2886762360 -0.0773524721 0.0207336523 -0.005582137210 0.2886762360 -0.0773524721 0.0207336523 -0.005582137211 0.2886762360 -0.0773524721 0.0207336523 -0.005582137212 0.2886762360 -0.0773524721 0.0207336523 -0.005582137213 0.2886762360 -0.0773524721 0.0207336523 -0.0055821372
Table 6.2: The approximate elements q̂i(n) for n = 3; : : : ; 13.

Hen
e, one method for inversion of matri
es An 
orresponds to storing the �rst half of the �rstrow of A�1n in a lookup table for several values of n and to apply the steps above. Should thismethod be too memory demanding for the given appli
ation, an approximation 
an be used asderived below.One interesting fa
t about the elements qi(n) (see Table 6.1) is that they are negligible for highenough i. In parti
ular for i � 4, sin
e jqi(n)j < 0:003 (8n and i � 4) whi
h is very small
ompared to jq0(n)j (always about 0:29). It is thus possible to approximate the inversion of Anby 
onsidering all qi(n) elements to be zero for i � L (e.g., L = 4).The elements qi(n) form a rapidly 
onvergent su

ession with n, for ea
h i. Hen
e, a goodapproximation to all qi(n) with i < L and n > N is qi(M), provided M (� N) and N are largeenough numbers.Having the des
ribed behavior in mind, the following approximation was implemented:
q̂i(n) = 8><>:qi(n) if n � N ,qi(M) if n > N and i < L, and0 if n > N and i � L;with L set to 4, M to 10 and N to 6. The approximate element values q̂i(n) 
an be seen inTable 6.2.The approximation presented is quite good, though the degree of a

ura
y of the algorithm maybe further improved by in
reasing L, N and/or M .

ImplementationThe inverse of a matrix 
an be 
al
ulated as its transposed adjoint divided by its determinant
A�1 = adjT (A)det(A) :
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The 
al
ulation of the adjoint and the determinant of a matrix involves only sums and multipli-
ations, hen
e, if the elements of An have integer values, det(A) and the elements of adj(A) willalso have integer values. This is the 
ase for the parti
ular An 
onsidered in this work. Sin
ethe values fj also have integer values, the spline algorithm 
an be implemented using solelyinteger arithmeti
. See Algorithm 3.
6.4.4 Exa
t algorithmThe matrix to invert as part of the spline algorithm is a spe
ial 
ase of a more generi
 
lassof matri
es. Matri
es whose 
olumns 
an be obtained by su

essively rotating the left 
olumnupwards (or downwards) are 
alled 
olumn 
ir
ulant matri
es. Matri
es whose rows 
an beobtained by su

essively rotating the top row rightwards (or leftwards) are 
alled row 
ir
ulantmatri
es. Row 
ir
ulant matri
es 
an be transformed into 
olumn 
ir
ulant matri
es simply bytransposition. If a matrix is both row and 
olumn 
ir
ulant, then it is also symmetri
.An eÆ
ient way of inverting a 
ir
ulant matrix 
an be easily devised using the DFS (Dis
reteFourier Series), or its fast algorithmi
 version, the FFT (Fast Fourier Transform).Let A be a n�n non-singular downwards 
olumn 
ir
ulant matrix with �rst 
olumn a (# is thedownwards rotation operator) A = �a a#1 � � � a#n�1� ;with

a = 264 a0...an�1
375 :

Let b = F(a), where F(�) is the DFS, and also let

 = 264 
0...
n�1

375 = 264 1b0...1bn�1
375 ;

then A�1 
an be 
al
ulated as A�1 = �d d#1 � � � d#n�1� ;where d = F�1(
), with F�1(�) the inverse DFS.In the 
ase of the spline algorithm,
a =

266666664
410...01

377777775 ;
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Algorithm 3 Fast 
losed 
ubi
 spline algorithm (in C)./** word and dword are signed integer types with 16 and 32 bits.* af 
orresponds simultaneously to the f ve
tor of points to interpolate* and to the a ve
tor of spline parameters.* n is the number of nodes in the spline.* det3 is det(A)/3.* b, 
, and d are s
aled output ve
tors of spline parameters.* b and d should be divided by det(A)=det3*3 and 
 by det3 to obtain the* 
orresponding spline parameters.*/void spline(dword *b, dword *
, dword *d, dword *af, dword n, dword *det3){ word j;dword a0, a1, a2, a3, a4, a5, b0, b1, b2, b3, b4, b5, det;/* d will temporarily store the RHS of the matrix equation: */d[0℄ = af[1℄ - (af[0℄ << 1) + af[n-1℄;for(j = 1; j < n-1; j++)d[j℄ = af[j+1℄ - (af[j℄ << 1) + af[j-1℄;d[n-1℄ = af[0℄ - (af[n-1℄ << 1) + af[n-2℄;/* Effi
ient and approximate matrix inversion, 
al
ulation of 
: */if(n == 3) {*det3 = 6;
[0℄ = d[0℄ * 5 - d[1℄ - d[2℄;
[1℄ = d[1℄ * 5 - d[2℄ - d[0℄;
[2℄ = d[2℄ * 5 - d[1℄ - d[0℄;}else if(n == 4) {*det3 = 64;a0 = d[0℄ << 4; a1 = d[1℄ << 4; a2 = d[2℄ << 4; a3 = d[3℄ << 4;
[0℄ = d[0℄ * 56 - a1 + (d[2℄ << 3) - a3;
[1℄ = d[1℄ * 56 - a2 + (d[3℄ << 3) - a0;
[2℄ = d[2℄ * 56 - a3 + (d[0℄ << 3) - a1;
[3℄ = d[3℄ * 56 - a0 + (d[1℄ << 3) - a2;}else if(n == 5) {*det3 = 22;a0 = d[0℄ * 5; a1 = d[1℄ * 5; a2 = d[2℄ * 5; a3 = d[3℄ * 5;a4 = d[4℄ * 5;
[0℄ = d[3℄ - a4 + d[0℄ * 19 - a1 + d[2℄;
[1℄ = d[4℄ - a0 + d[1℄ * 19 - a2 + d[3℄;
[2℄ = d[0℄ - a1 + d[2℄ * 19 - a3 + d[4℄;
[3℄ = d[1℄ - a2 + d[3℄ * 19 - a4 + d[0℄;
[4℄ = d[2℄ - a3 + d[4℄ * 19 - a0 + d[1℄;}else if(n == 6) {*det3 = 30;a0 = d[0℄ * 7; a1 = d[1℄ * 7; a2 = d[2℄ * 7; a3 = d[3℄ * 7;a4 = d[4℄ * 7; a5 = d[5℄ * 7;b0 = d[0℄ << 1; b1 = d[1℄ << 1; b2 = d[2℄ << 1; b3 = d[3℄ << 1;b4 = d[4℄ << 1; b5 = d[5℄ << 1;
[0℄ = b4 - a5 + d[0℄ * 26 - a1 + b2 - d[3℄;
[1℄ = b5 - a0 + d[1℄ * 26 - a2 + b3 - d[4℄;
[2℄ = b0 - a1 + d[2℄ * 26 - a3 + b4 - d[5℄;
[3℄ = b1 - a2 + d[3℄ * 26 - a4 + b5 - d[0℄;
[4℄ = b2 - a3 + d[4℄ * 26 - a5 + b0 - d[1℄;
[5℄ = b3 - a4 + d[5℄ * 26 - a0 + b1 - d[2℄;}else {*det3 = 418;
[0℄ = d[n-3℄ * -7 + d[n-2℄ * 26 - d[n-1℄ * 97 + d[0℄ * 362 - d[1℄ * 97 + d[2℄ * 26 - d[3℄ * 7;
[1℄ = d[n-2℄ * -7 + d[n-1℄ * 26 - d[0℄ * 97 + d[1℄ * 362 - d[2℄ * 97 + d[3℄ * 26 - d[4℄ * 7;
[2℄ = d[n-1℄ * -7 + d[0℄ * 26 - d[1℄ * 97 + d[2℄ * 362 - d[3℄ * 97 + d[4℄ * 26 - d[5℄ * 7;for(j = 3; j < n - 3; j++)
[j℄ = d[j-3℄ * -7 + d[j-2℄ * 26 - d[j-1℄ * 97 + d[j℄ * 362 - d[j+1℄ * 97 + d[j+2℄ * 26 - d[j+3℄ * 7;
[n-3℄ = d[n-6℄ * -7 + d[n-5℄ * 26 - d[n-4℄ * 97 + d[n-3℄ * 362 - d[n-2℄ * 97 + d[n-1℄ * 26 - d[0℄ * 7;
[n-2℄ = d[n-5℄ * -7 + d[n-4℄ * 26 - d[n-3℄ * 97 + d[n-2℄ * 362 - d[n-1℄ * 97 + d[0℄ * 26 - d[1℄ * 7;
[n-1℄ = d[n-4℄ * -7 + d[n-3℄ * 26 - d[n-2℄ * 97 + d[n-1℄ * 362 - d[0℄ * 97 + d[1℄ * 26 - d[2℄ * 7;}det = 3 * *det3;/* Cal
ulation of b and d: */for(j = 0; j < n-1; j++) {b[j℄ = (af[j+1℄ - af[j℄) * det - (
[j℄ << 1) - 
[j+1℄;d[j℄ = 
[j+1℄ - 
[j℄;}b[n-1℄ = (af[0℄ - af[n-1℄) * det - (
[n-1℄ << 1) - 
[0℄;d[n-1℄ = 
[0℄ - 
[n-1℄;}
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so 
i is 
i = 14 + 2 
os(i2�n ) :Hen
e, the exa
t 
omputation requires only the 
al
ulation of one FFT, whose run time isO(n lnn).
6.4.5 ResultsIn order to assess the a

ura
y of the approximate algorithm, a few simple experiments weredone:

1. Generate 100 sets of n random 
ontrol points ea
h �tting into a window slightly smallerthan QCIF: xj 2 [10; 165℄ and yj 2 [10; 133℄.2. Solve the spline problem for ea
h of the 100 sets of nodes using the approximate algorithmand a non-approximate algorithm.3. For ea
h set, 
al
ulate the maximum error between the two versions of the spline. Thiserror is 
al
ulated independently in x (ex) and y (ey).4. Cal
ulate an upper bound for the error between the two lines7: qe2x + e2y.5. Cal
ulate the maximum of the upper bounds 
al
ulated for ea
h set.
The above experiment was repeated for di�erent numbers of nodes. Sin
e the algorithm usedis exa
t for n � 6, the experiments were done only for n > 6, viz. n = 7, 8, 9, 10, 15, 20, 40,and 100. The maxima of the upper bounds (whi
h 
an be 
onsidered as estimates of the errorupper bound for ea
h number of nodes) are shown in Table 6.3.Observation of the error table leads to the 
on
lusion that the approximate algorithm produ
eserrors of at most 1=3 of a pixel when working on 
ontrol points lo
ated in a window of aboutQCIF size. Hen
e, it is a good 
andidate for eÆ
ient implementation.
6.5 Con
lusions
A 
amera movement 
ompensation method was presented in Se
tion 6.1. The method has beenshown to lead to small improvements in 
lassi
al 
ode
s su
h as H.261. As dis
ussed, this doesnot render 
amera movement estimation useless, sin
e it is important information to be around7This is an upper bound for two reasons. The �rst is that the maximum errors in x and y usually do not o

urfor the same t. The se
ond is that the error between two lines should a
tually be 
al
ulated as the maximum ofthe distan
e between any point in one of them to the nearest point in the other.



6.5. CONCLUSIONS 253n error upper bound7 0:1017758 0:3047619 0:11603810 0:23029815 0:27095320 0:2858140 0:283622100 0:299161Table 6.3: Table showing the evolution with n of the estimated error upper bound.
for the end user to use in its manipulations of the 
ontents of video sequen
es, besides being ofuse for indexing and 
amera stabilization.A systematization of the �eld of partition 
oding has been proposed in Se
tion 6.2. It hasthe form of a taxonomy tree whi
h is divided in two main levels: partition type and partitionrepresentation. The proposed systematization is believed to simplify the 
omparison betweenpartition 
oding te
hniques, by establishing 
learly whi
h type of partitions a given partition
oding te
hnique addresses, and whi
h partition representation that te
hnique is based on.An overview of the partition 
oding te
hniques available for ea
h partition type and the 
orre-sponding partition representations has been presented in Se
tion 6.3.Finally, some suggestions for eÆ
ient approximate implementations of 
losed 
ubi
 splines havebeen proposed in Se
tion 6.4, whi
h may be of use in parametri
 
urve partition 
oding te
h-niques.
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Chapter 7
Con
lusions: Proposal for a new
ode
 ar
hite
ture
In the previous 
hapters a series of analysis and 
oding tools were developed. Spatial analysistools were developed in Chapter 4 and dis
ussed in the uni�ed framework of SSF and relatedgraph theoreti
al 
on
epts. Time analysis tools were developed in Chapter 5, where 
ameramovement estimation algorithms and image stabilization methods have been proposed. Codingtools were developed in Chapter 6, whi
h additionally proposed a systematization of the �eldof partition 
oding. The logi
al 
on
lusion for this thesis is a proposal for a 
ode
 ar
hite
turethat might integrate most of these tools. The next se
tion 
ontains su
h a proposal, whi
h isfollowed by suggestions for future work and by the list of the thesis 
ontributions.
7.1 Proposal for a se
ond-generation 
ode
 ar
hite
-ture
This se
tion proposes an ar
hite
ture for a four-
riteria (bitrate, distortion, 
ost, and 
ontenta

ess e�ort) se
ond-generation video 
ode
. This work as already been published in [117℄, andit owes mu
h to the fruitful dis
ussions between the author and the Image Pro
essing Groupof the UPC (Universitat Polit�e
ni
a de Catalunya), whi
h later made their own 
ontributionthrough the Sesame veri�
ation model proposal to MPEG-4 [30℄.Possible sour
e models for 
ode
s with the proposed stru
ture are dis
ussed in this se
tion.The main blo
ks of the 
ode
, namely image and motion analysis, are also dis
ussed and somepossible solutions proposed.From the point of view of this proposal, the MPEG-4 fun
tionalities [139℄ 
onsidered are thoseaddressing 
ontent a

ess and improved 
oding eÆ
ien
y. The obje
tive is thus to minimizerate, distortion, and 
ost (i.e., maximize 
oding eÆ
ien
y) as well as to minimize the 
ontenta

ess e�ort (the \fourth 
riterion" [162℄). Noti
e, however, that 
ontent manipulation is notaddressed here. A simpli�ed obje
tive was deemed to be the provision for means to a

ess easily255
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the 
ontent of a video stream.The main blo
ks of the proposed ar
hite
ture are des
ribed from a fun
tional point of view,and the requirements ea
h blo
k must ful�ll are presented.

7.1.1 Sour
e model
The sour
e model sele
ted is not new [40℄: 
exible 2D+1/2 obje
ts. That is, obje
ts areunderstood as 2D regions that 
an 
hange shape over time (
exibility), and that 
an overlapea
h other. This is the same model used in Sesame. Ea
h obje
t's motion 
an be des
ribed by asingle set of motion model parameters. The motion model used 
an be translational, aÆne, ormore 
omplex. As to textures, no expli
it assumptions are made, ex
ept that motion boundariesshould 
oin
ide with texture boundaries (ex
ept in pathologi
al 
ases).A

ording to the adopted sour
e model, obje
ts are de�ned as a set of regions with 
oherentmotion. Hen
e, image analysis, within this framework, is based essentially on motion analysis.This means that obje
ts 
an be, and usually will be, inhomogeneous in terms of texture.The approa
h taken by MPEG-4 has been di�erent [77℄. Essentially, MPEG-4 is an extensionto previous MPEG standards providing \sequen
es" with arbitrary shapes, viz. VOs (VideoObje
ts). Usually the VOs 
orrespond to obje
ts with some semanti
al meaning. MPEG-4 also provides a stru
tured s
ene des
ription as an a
y
li
 graph of nodes spe
ifying bothsyntheti
 and natural obje
ts. In the later sense, MPEG-4 is also an extension of the VRMLstandard. Nevertheless, the inside (
olor or texture) of the VO, and its time evolution, isspe
i�ed with te
hniques whi
h stem dire
tly from the previous MPEG standards and H.261and H.263 [136, 137, 62, 63℄, even if some more modern approa
hes, su
h as sprites, meshes andfa
e obje
ts, are used. Noti
e, however, that the insides of sprites are also still en
oded withte
hniques whi
h 
an be 
lassi�ed as low-level vision, and that fa
e obje
ts, whi
h 
orrespondto a 3D s
ene des
ription, 
an hardly be 
onsidered generi
, sin
e they apply only to a veryparti
ular type of s
ene. It 
an be said that MPEG-4 video is 
lassi
al texture 
oding onarbitrarily shaped obje
ts. Even if it indeed 
an be 
lassi�ed as a good step towards se
ond-generation video 
oding, it is still in the transition. The Sesame [30℄ proposal to MPEG-4,whi
h was not a

epted due to its weaker performan
e, 
ould, on the other hand, be 
lassi�edas truly se
ond-generation.It is expe
ted that MPEG-4 version 2, through its provision for programmable terminals, willallow more sophisti
ated ar
hite
tures, su
h as the Sesame one or the one proposed here, tobe developed independently and blended into the tool set of MPEG-4 to provide extendedfun
tionalities or 
apabilities.In the following, the word image may be repla
ed by VOP, thus allowing the proposed ar
hi-te
ture to be used for en
oding of arbitrarily shaped sequen
es.
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7.1.2 Code
 ar
hite
tureFigures 7.1 and 7.2 show the proposed ar
hite
ture for the 
ode
. The main blo
k is \Imageanalysis", whi
h partitions ea
h image into its 
omposing obje
ts, ea
h with an estimated set ofmotion parameters. Motion parameters are (di�erentially) en
oded by the \Motion parameteren
oding" blo
k. The \Partition en
oding" blo
k en
odes the image partition di�erentiallyusing the estimated motion for 
ompensating the partition of the previous image. After \Motion
ompensation" of the previous de
oded image, new obje
ts and un
overed areas of the imageare en
oded using an intra mode. The \Dete
tion of MF (Model Failure) areas" blo
k dete
tsareas in the image where the underlying sour
e model fails. Those areas are then en
oded bythe \En
oding of MF partition" and \En
oding of MF texture" blo
ks.
The interfa
e signalsSome interfa
e signals have been de�ned in the blo
k stru
ture:
P , E Denote the image partition and the extra partition parameters. These signals representthe 
urrent partition and extra parameters related to its spatial and temporal stru
ture.P may be simply a partition image, where ea
h 
lass label 
orresponds to an obje
t,some spe
ial values being used to identify un
overed parts of obje
ts. Noti
e that no
onstraint on the 
onne
tivity of obje
ts was mentioned: an obje
t 
an 
onsist of a
olle
tion of disjoint 
onne
ted regions (dis
onne
ted 
lasses). E 
onsists of some of thefollowing extra information about the partition: number of 
lass labels in use, maximumlabel in use, graph of o

lusions, that is a graph spe
ifying whi
h regions overlap whi
h,and information regarding the temporal evolution of obje
ts, that is whi
h 
lasses arenew and whi
h no longer exist, or whi
h 
lasses where split or joined together.PMF Denotes the MF partition (see dis
ussion below).M Denotes the motion model parameters. A ve
tor of motion model parameters for ea
hobje
t in the s
ene (new obje
ts may la
k this information, though). These parametersmay be translational parameters, aÆne motion parameters, or parameters of some othermore 
omplex motion model. It may also in
lude parameters of a given 
amera movementmodel used, used to 
ompensate global motion in the sequen
e.I Denotes an image.
Image analysisThe purpose of the \Image analysis" blo
k is to des
ribe the s
ene in terms of its 
omponentobje
ts, a

ording to the sour
e model de�ned. As a �rst approa
h to the problem, this analysisis supposed to be done in a 
ausal way and by looking at no more than two images at a time.This approa
h has been sele
ted be
ause real time and low delay video 
ommuni
ations areenvisaged. One should keep in mind, however, that for appli
ations su
h as storage, theserestri
tions do not ne
essarily apply.



258CH
APTE

R7.C
ONCL

USION
S:PRO

POSA
LFOR

ANEW
CODE

CARC
HITEC

TURE

D

D

D

D

imageanalysis partitionen
oding motion
ompensation dete
tionofMF areas en
odingof MFpartition

motionparameteren
oding
partition data

~Pn�1

motion data MF texture data

intra texture data

MF partition data

~In�1
~En�1 ~Pn�1~En�1 ~En

~In�1
~MnMn

~Mn�1

In~Pn~En

^^In ~Pn~En

~PMFn
~In

MnPnEn ~Mn ^In PMFn
In^^In

~PnIn

en
odingof MF

intraen
onding ofun
overedareas

texture

Figure 7.1: Proposed en
oder ar
hite
ture. See text for the meaning of the interfa
e signals. n means 
urrent image and n � 1means the previous image. Blo
ks labeled D are (delay) memories. A tilde ~ means an en
oded/de
oded (quantized) signal, whilea hat ^ means a 
ompensated signal. The bla
k 
ir
les � are output 
onne
tions to a multiplexer/
hannel 
oder.



7.1.PROPOSALFORASECOND-GENERATIONCODECARCHITECTURE
259

D

D

D

D


ompensationmotion intrade
odingofun
overedareas
de
odingof MFpartition

partitionde
odingmotionparameterde
oding
motion data partition data intra texture data

MF partition data MF texture data~En

~Mn�1 ~Mn~Pn�1~En�1

~Mn~En
~In�1

~En~Pn
^In~Pn

~Pn ~PMFn
^^In ~Inof MFtexturede
oding

Figure 7.2: Proposed de
oder ar
hite
ture. See text for the meaning of the interfa
e signals and Figure 7.1 for the notation.



260 CHAPTER 7. CONCLUSIONS: PROPOSAL FOR A NEW CODEC ARCHITECTURE
Image analysis is required to segment the 
urrent image (using also the previous image, theprevious partition information, and the previous motion parameters) into a set of 
onne
tedregions, grouped into (not ne
essarily 
onne
ted) obje
ts: a partition. Often the dete
tedobje
ts will 
onsist only of parts of the real obje
ts in the s
ene, e.g., in the 
ase of o

lusion byother obje
ts. These obje
ts will mostly be related to obje
ts present in previous images, thoughnew obje
ts are likely to appear from time to time. This partition is additionally required to
ontain information about un
overed regions. Un
overed regions should be labeled as belongingto one of the adja
ent regions. For all pra
ti
al purposes, new obje
ts are un
overed areas thatare not deemed to belong to any of the adja
ent obje
ts.Obje
ts should have 
oherent motion, i.e., all visible (non-un
overed) parts of an obje
t shouldbe represented by a single set of (ba
kward) motion model parameters, also obtained by thisblo
k. The partition should desirably be 
oherent with the underlying texture. For that, spatialanalysis may have to be used, as dis
ussed in Chapter 4.If there is 
amera movement in the s
ene, the image analysis blo
k should estimate its parametersa

ording to a given 
amera movement model, as dis
ussed in Chapter 5.Finally, the image analysis blo
k is required to take into a

ount the evolution of the obje
tsin the s
ene. That is, segmentation should also be 
oherent in time. This is why the previouspartition information and the previous motion parameters are fed ba
k into the image analysisblo
k.
Partition en
odingThe \Partition en
oding" blo
k should en
ode the 
urrent image partition and the extra pa-rameters as eÆ
iently as possible. It seems reasonable to expe
t that 
onsiderable savings inbitrate may result from en
oding partitions di�erentially using motion 
ompensation. Noti
e,however, the following problems:

1. in order to motion 
ompensate (proje
t) obje
ts from the previous image into the 
urrentimage, forward motion must be available; and2. the motion parameters of an obje
t are usually en
oded with respe
t to the obje
t'sshape and position, and the obje
t's shape and position are predi
tively en
oded usingthe obje
t's motion.
Hen
e, apparently, problem 1 makes it ne
essary to invert motion estimation from ba
kwardto forward, whi
h would 
reate additional problems when 
ompensating the inside (texture)of regions, viz. the possibility of gaps appearing, while problem 2 
reates a 
hi
ken and eggdilemma.However, if motion models su
h as aÆne are used, the problems are easy to solve. As toproblem 1, aÆne motion is almost always invertible, so it is simple to obtain forward motionfrom the ba
kward motion parameters. Regarding problem 2, one 
an always en
ode the aÆnemotion parameters with regard to the obje
t shape and position in the previous image.
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The graph of o

lusions from the previous partition image is used here to de
ide whi
h obje
ttakes pre
eden
e over whi
h in 
ase several 
ompensated obje
ts overlap.As to the graph of o

lusions itself, its topology often does not need to be en
oded, sin
e it isimpli
it in the de
oded partition. Hen
e, both 
oder and de
oder are able to build the sameundire
ted graph, given the 
urrent image partition. By making the graph dire
ted, o

lusionsmay be represented. If an ar
 is undire
ted, the regions do not o

lude ea
h other. If itis dire
ted, the dire
tion spe
i�es whi
h region o

ludes whi
h. Dire
tion information mustbe en
oded for ea
h ar
 in the impli
it undire
ted graph. If mutual o

lusions o

ur, thenmultigraphs may have to be used, ea
h parallel ar
 spe
ifying a segment of boundary betweentwo regions with given o

lusion 
hara
teristi
s. This extra information may also be built ontop of the impli
it undire
ted (simple) graph.The predi
tion error of the motion 
ompensated partition 
an be en
oded using the te
hniquesdis
ussed in Chapter 6.Finally, some means of en
oding the temporal evolution of obje
ts, in terms of split and mergedobje
ts and of disappeared and newly appeared obje
ts, must be devised.
Motion parameters en
odingMotion model parameters are a very sensitive type of information. Motion en
oding errors 
anhave 
onsiderable reper
ussion in the quality of motion 
ompensation and hen
e on the qualityof the predi
ted image obtained by motion 
ompensation. Thus, motion parameters shouldprobably be en
oded losslessly or at least with high a

ura
y. Some s
heme for di�erentiallyen
oding the motion parameters for ea
h obje
t will probably be of use.Often the best way of en
oding the parameters of some model (of texture or of motion) ina given region is to send samples of the region values whi
h are suÆ
ient for the de
oder toestimate a

urately the original model parameters. Often the lo
ation of these samples 
anbe inferred by the de
oder with the available information, whi
h may or may not in
lude theregion shape. The advantage of this s
heme over s
hemes where model parameters are en
odeddire
tly stems from the fa
t that, if the model is well behaved (and typi
al models are), thee�e
ts of quantization on the de
oded region are more 
learly understandable if this operationis performed on the fun
tion samples than if it is performed dire
tly on the model parameters.A typi
al example is aÆne motion models, whi
h are very useful for representing region motion.For 2D images, the parameters of aÆne motion of a region 
an be represented by three non-
ollinear sample motion ve
tors.1 The errors of the motion ve
tors within the triangle limitedby the three samples will always be smaller than the quantization errors of the quantized samplemotion ve
tors, for ea
h motion ve
tor 
omponent. A reasonable 
hoi
e for the sample positionsseems to be the verti
es of a triangulation of the obje
t (e.g., the enveloping triangle with thesmallest area). Sin
e this triangulation may be done both at en
oder and de
oder, one needsonly to en
ode the values of the sample motion ve
tors of all regions, maybe in raster order,using predi
tion as in H.263 [63℄.1If the region itself 
onsists of 
ollinear pixels, then this restri
tion may be relaxed. Two non-
oin
identsamples are suÆ
ient. Similarly for the trivial one-pixel region.
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As already mentioned in the previous se
tion, motion model parameters will be en
oded beforeen
oding the 
urrent partition, so that the partition of the previous image 
an be motion
ompensated. The above referred triangulation is thus based on the previous position andshape of the obje
ts.
Motion 
ompensationOn
e the image partition is known and motion model parameters are available for ea
h obje
t,motion 
ompensation 
onsists simply in proje
ting the previous image into the 
urrent onea

ording to the motion ve
tor �eld re
reated from the motion parameters. If referen
es fromthe future are allowed, as in MPEG-2 and MPEG-4, proje
tion 
an also be performed from thefuture, and thus also for new obje
ts. This requires, nevertheless, an
hor intra images, whereobje
ts are en
oded without any referen
e, or an
hor images predi
ted only from the past. Sin
einterpolation may be needed to obtain the 
orresponding pixel in the referen
e (de
oded) image,progressive smoothing of the obje
ts' texture may result. This may be solved by building anobje
t store, and by 
ompositing the motions between su

essive images in order to fet
h thetexture from this store. This method was originally proposed in COST211ter's SIMOC1 [39℄,and is similar to the one used for sprite update in MPEG-4.
Intra en
oding of un
overed textureUn
overed areas are those with no 
orresponden
e in the previous (de
oded) image. They may
orrespond to new obje
ts or to un
overed areas of existing obje
ts. These areas have to be
oded in intra mode. There are several possibilities, from shape adaptive DCT and relatedmethods [184, 84, 54, 88, 87℄ to VQ (Ve
tor Quantization) [59℄. However, other methods maybe attempted, su
h as VQ using the part of the obje
t that was not un
overed (if it exists) asa 
odebook, in the 
ase of textured areas, or some kind of extrapolation plus predi
tion errors,in the 
ase of smooth areas.For new obje
ts, it might be useful to use texture based segmentation 
oding s
hemes, sin
eit would 
reate a smooth evolution path towards hierar
hi
al sour
e models. In that 
ase, thespatial analysis tools proposed in Chapter 4 may prove useful, as well as the partition 
odingtools dis
ussed in Chapter 6.
Model Failure blo
ksNo matter how 
omplex the motion models, there will always be some obje
ts (or parts thereof)undergoing movements whi
h do not �t them. In su
h 
ases either these obje
ts are split intosmaller, and thus easier to model, obje
ts, whi
h may be extremely in
onvenient from the pointof view of 
ontent-based fun
tionalities, or motion 
ompensation errors, i.e., MFs [40℄, will haveto be allowed.The \Dete
tion of MF areas" blo
k uses 
riteria based on motion 
ompensation errors. Thisblo
k should take into a

ount the 
urrent image partition in order to produ
e a 
oherent MF
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partition. This MF partition is then en
oded by the \En
oding of MF partition" blo
k.Finally, the \En
oding of MF texture" blo
k en
odes the texture of the MF areas using shape-adaptive te
hniques.
7.1.3 Con
lusions
A new se
ond-generation 
ode
 ar
hite
ture has been proposed whi
h may use some of the toolsdeveloped in the previous 
hapters. The next se
tion dis
usses how this ar
hite
ture and thetools proposed may be improved.
7.2 Suggestions for further work
7.2.1 Code
 ar
hite
ture
Regarding the proposed 
ode
 ar
hite
ture, the �rst issue that remained for future work wasits full implementation making use of the analysis and 
oding tools proposed in the previous
hapters.
Sour
e model
The sele
ted sour
e model may be improved in several ways. One of the possibilities is to allowthe obje
ts to have memory [167℄. That is, obje
ts 
an be su

essively �lled from the partialinformation available at ea
h image. This would 
orrespond to the layered approa
h of Adelsonet al. [3℄. In his model, ea
h obje
t is represented by a mask, spe
ifying the known shape ofthe obje
t, and by the obje
t's texture. One diÆ
ulty with this s
heme is the representationof mutually overlapping obje
ts, though this might be solved by adding dis
riminating depthvalues to the obje
t's mask (at the expense of some extra bitrate).Other approa
hes in
lude more realisti
 3D models of the s
ene, though experien
e has shownthat this task is tremendous, ex
ept when a priori knowledge about the s
ene is available (e.g.,fa
e obje
ts in MPEG-4).Finally, sin
e fa
ilitating the manipulation of video 
ontent is one of the aims of modern 
ode
s,it seems that the de�nition of obje
ts as zones with 
oherent motion may not provide enough
ontent a

ess dis
rimination: for instan
e, a stati
 ba
kground will be 
onsidered as a singleobje
t, though the user might be interested in manipulating individual obje
ts (su
h as a paint-ing on a wall). This may lead to the de�nition of a hierar
hy of obje
ts: at the lowest levelobje
ts are de�ned by homogeneous texture and at the highest level by homogeneous motion.This has been the step taken by Sesame [30℄.
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Image analysis
Several te
hniques 
an be used for image analysis:
Shape from texture (and motion from shape)Firstly segmentation is 
arried out using texture information only (though with provisionsto keep temporal 
oheren
y), as in Chapter 4. Then motion is estimated for ea
h region.Finally obje
ts are built from regions with motion des
ribable by a single set of motionparameters. Hen
e, time analysis is performed after a �rst step of spatial analysis.
Shape from motionOpti
al 
ow (2D proje
tion of the real 3D motion) is estimated �rst. Then the obtainedve
tor �eld is segmented (maybe using texture for a

urate boundary lo
alization). Fi-nally, the motion model parameters 
orresponding to ea
h region are 
omputed. Noti
ethat some opti
al 
ow algorithms dete
t motion boundaries that 
an be used to help seg-mentation. In this 
ase time analysis is performed �rst. In order to obtain a hierar
hy ofobje
ts, the partition may then be re�ned based solely on spatial analysis. Hen
e, spatialanalysis is performed only after a �rst step in time analysis.
Simultaneous shape and motionSimultaneous motion estimation and image segmentation are attempted. These te
hniquessometimes 
orrespond to iterative versions of the shape from motion andmotion fromshape approa
hes. In this 
ase, it is also possible to use texture information for a

urateboundary lo
alization.
The most promising of these approa
hes is the last one, simultaneous analysis of shape andmotion, sin
e it takes into a

ount a basi
 
ontradi
tion in image analysis: a good motionestimation requires a

urate segmentation of the image into obje
ts with di�erent motion and,simultaneously, an a

urate segmentation requires a good motion estimation.Apart from the desired 
oheren
y of motion segmentation results with the underlying textureboundaries, another important point for investigation is the maintenan
e of temporal 
oheren
yalong su

essive image partitions. Some interesting ideas 
an be found in [153℄, whi
h havealready been applied to the spatial analysis tools proposed in Chapter 4.
Motion models
As to the motion models used, experien
e has shown that translational motion is 
learly insuf-�
ient, sin
e it 
annot des
ribe but the simplest types of proje
ted 3D motion. However, aÆnemotion models, though 
ertainly not enough to model the perspe
tive proje
tion of the motionof all rigid 3D surfa
es, have shown to be reasonably good in most situations and relativelysimple to manage [41℄ (6 parameters per obje
t, instead of 2 for translational models).
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Content a

ess e�ortThough the proposed 
ode
 ar
hite
ture and sour
e model seemmore appropriate for minimizingthe 
ontent a

ess e�ort than 
lassi
al video 
oding algorithms, the improvement must still bequanti�ed: standard ways of measuring the 
ontent a

ess e�ort must be devised.Other issues requiring attention are how to manipulate obje
ts whose des
ription is spread alongthe en
oded video stream and how to periodi
ally refresh obje
t des
riptions.
7.2.2 Graph theoreti
 foundations for image analysisAn issue whi
h remained for future work was the study of the theory of 
ell 
omplexes and thereformulation of the SST foundations of image analysis in their framework.An interesting question whi
h also remained for future work is the 
he
king of whether anyspanning k-tree su
h that ea
h of its 
onne
ted 
omponents is a SST of the 
orrespondingsubgraph 
orresponds to a SSSkT of the graph for some set of seeds. If this is true, it wouldbe interesting to relate the result to the skeletons in mathemati
al morphology. The assertionis obviously true if ea
h seed 
an 
onsist of more than one vertex: simply sele
t as a seedall verti
es of the 
orresponding 
onne
ted 
omponent. In this 
ase one may ask what is theminimal number of vertex seeds with the required property.
7.2.3 Spatial analysisRegion- and 
ontour-oriented segmentation algorithmsThe extension of all the notions to 3D, whose treatment in this thesis is only partial, and thestudy of segmentation te
hniques, also with a graph theoreti
 framework, but now using the
on
epts of 
ow on graphs [200℄, remained for future work.Another issue requiring further work is the study of multiple solutions to the SSF or SSTproblems and their impa
t in the multiple solutions of the region growing, region merging, and
ontour 
losing segmentation algorithms.Finally, the development of faster implementations of the globalized segmentation algorithmsusing SST-based 
on
epts also remained for future work.
A new knowledge-based segmentation algorithmThe 
lassi�
ation of sequen
es 
an be improved. A re�nement of Class 4 is possible by intro-du
ing information about the kind of movement in the ba
kground:Class 4AUniformly moving ba
kground, i.e., the whole ba
kground su�ers the same motion (a
-
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ording to a given motion model) from one image to the next (e.g., \Foreman" has thiskind of ba
kground movement). Usually the ba
kground motion is due to 
amera move-ments.

Class 4BNon-uniformly moving ba
kground (e.g., \Carphone" has a non-uniformly moving ba
k-ground, sin
e the lands
ape seen through the windows moves independently of the ba
k-ground).
Assuming a translation plus isometri
 s
aling motion model, 
lass 4A 
orresponds to sequen
eswhere movement in the ba
kground is due to 
amera operations su
h as pan, tilt and zoom(
amera vibrations 
an be 
onsidered to 
onsist of small pan and tilt movements). The segmen-tation of this 
lass of sequen
es might be attempted using the same algorithms as for Class 3 ifimage stabilization is performed �rst (see Se
tion 5.5). Image stabilization may also be useful inthe 
ase of 
lass 4B sequen
es, sin
e these s
enes usually have a dominant motion in the ba
k-ground (e.g., in \Carphone" the vibration, if 
orre
tly estimated, would be 
an
eled and theonly remaining motion in the ba
kground would be due to the moving lands
ape seen throughthe window). The 
ombination of image stabilization and knowledge-based segmentation hasnot been attempted, and remained as an issue for future work.
RSST segmentation algorithms
The major drawba
k of the des
ribed algorithms is that they do not deal well with textures.This drawba
k, however, does not seem to be related as mu
h to the algorithms themselves, asto the region models used. Hen
e, a subje
t requiring further study is region models whi
h 
anappropriately represent textured regions. As to the algorithms, the basi
 algorithm behind 
atand aÆne RSST needs to be improved to avoid over adjustment for small regions. A possibilitymight be a more thorough integration of the split and merge phases of the algorithm.A related subje
t requiring further study is that of split using models, instead of the simpledynami
 range used in this work. Also, a formalization of the impa
t of split in memory and
omputational power required should be performed. Finally, a memory eÆ
ient version of thealgorithms should be implemented so as to allow pra
ti
al segmentation of larger images.
Supervised segmentation
An issue whi
h remained for future work is the development of supervision algorithms whi
h
an substitute, at least partially, human intervention. Issues whi
h also remain for future workare the optimization of the RSST algorithms with seeds (viz. the global error minimizing ones)and the test of the region growing algorithm (for �nding the SSSSkT) with amortized lineartime exe
ution proposed in Se
tion 4.3.3.
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Time-
oherent analysis
Three issues remained as the subje
t for future work. The �rst is the introdu
tion of betterregion models (e.g., aÆne), in order to avoid the false 
ontours, and of illumination models,to avoid the arti�
ial separation of regions whi
h semanti
ally are one only (see the arm inFigure 4.24). The se
ond is the introdu
tion of motion 
ompensation so as to improve theproje
tion of past partitions into the future, whi
h has already been done with su

ess in thewatershed algorithms, see [105℄. Finally, the study of region models 
apable of modeling boththe 2D textures and their motion from one image to the next, for instan
e a

ording to an aÆnemodel of motion.
7.2.4 Time analysis
Several issues remained for further work:1. introdu
tion of sub-pixel a

urate blo
k mat
hing, so as to improve estimation of smallpan movements;2. quanti�
ation of errors in blo
k mat
hing estimates, viz. the estimation of the 
ovarian
ematrix of the motion ve
tors;3. quanti�
ation of errors in 
amera movement estimates;4. introdu
tion of rotation around the lens axis as a possible 
amera movement;5. improvement of interpolation of pixel values in the algorithm for image stabilization; and6. integration of motion ve
tor �eld smoothing with the Hough outlier dete
tor.
7.2.5 Coding
A few issues remained for future work:1. the extension of the partition tree to in
lude a bran
h for line drawings or \
ontoursthat may be open" (whi
h are not the dual of some partition); this is of interest sin
e
ontour-based 
oding, or image re
onstru
tion from edges [58, 19, 37, 43℄, with its longhistory, still seems to have a large potential in image 
oding;2. the implementation of optimized 
hain 
oding using algorithms solving the Chinese post-man problem; and3. the extension of the taxonomy tree with a systematization of partition 
oding te
hniques,besides partition types and representations.
7.3 List of 
ontributions
This se
tion lists the 
ontributions of the thesis a

ording to the 
orresponding 
hapter.
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7.3.1 Graph theoreti
 foundations for image analysisIn this 
ase the results are new in the framework of image analysis.1. A thorough dis
ussion of seeded SST algorithms (viz. SSF, SSkT, SSSkT, and SSSSkT).2. An asymptoti
ally linear amortized time algorithm for obtaining multiple SSSSkTs, fordi�erent sets of seeds, of the same graph.3. A dis
ussion of the relation between the SSF and dual graphs, whi
h plays an importantrole in proving that basi
 region merging and basi
 
ontour 
losing are one and the samealgorithm, solving the same problem.
7.3.2 Spatial analysis1. A proposal for hierar
hizing the segmentation pro
ess.2. A dis
ussion of region- and 
ontour-oriented algorithms using the 
ommon framework ofSSTs and related 
on
epts from graph theory.3. A dis
ussion, in the same framework, of the main di�eren
es and similarities betweenregion merging, region growing, and 
ontour 
losing, namely the duality between 
ontour
losing and region merging.4. A des
ription of the watershed algorithm as a SSSSkT problem.5. An appli
ation of the asymptoti
ally linear amortized time SSSSkT algorithm for obtain-ing multiple region growing segmentations of an image, e.g., in a supervised segmentationenvironment.6. First ideas regarding globalization of information in the basi
 segmentation algorithms,whi
h may lead to a more thorough theoreti
al foundation for segmentation in the future.7. A knowledge-based mobile videotelephony segmentation algorithm, able to 
ope withvibration and 
amera movement.8. Extensions of the RSST algorithms, namely the new RSST, the 
at RSST with an addedsplit phase, and the use of aÆne models in the aÆne RSST.9. Extensions of the RSST so that seeds are used, and its use for supervised segmentation.10. Use of the seed extensions of the RSST algorithms for time-re
ursive segmentation ofmoving images.
7.3.3 Time analysis1. Two 
amera movement estimation algorithms based on blo
k mat
hing, using least squaresestimation with removal of outliers (see also [4℄), though both using motion ve
tor smooth-ing as an intermediate step in order to improve estimation.2. An image stabilization method making use of the estimated 
amera movement fa
tors.
7.3.4 Coding1. A 
amera movement 
ompensation method for 
lassi
al 
ode
s (whi
h is also appli
ableto more modern ones, su
h as those 
ompliant with the forth
oming MPEG-4 standard).
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2. A systematization of partition types and representations in the form of a taxonomy tree.3. A suggestion for improving 
hain 
odes of mosai
 partitions through the solution of theChinese postman problem or related problems.4. A new fast (approximate) 
losed 
ubi
 spline algorithm.
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Appendix A
Test sequen
es

When we look at a television program, we seemore than 
i
kering dots: we see people.Douglas R. Hofstadter
This appendix dis
usses brie
y the formats under whi
h digital video sequen
es are available,and then pro
eeds to des
ribe the test sequen
es used in this thesis.
A.1 Video formats
Digital video sequen
es usually 
ome in the format spe
i�ed by the ITU-R Re
ommendationBT.601-2 [20℄ or a derivative thereof. That is, in the Y 0CBCR 
olor spa
e, with an interla
edsampling latti
e, where the 
hroma signals are horizontally subsampled by a fa
tor of 2 relativeto the luma signal, and the 
hroma samples are 
o-sited with the even luma samples (assumingthe �rst luma sample in ea
h line is sample 0). This format is referred to as 4:2:2. The numberof samples is 720 horizontally and 288 verti
ally (for ea
h �eld) for the luma signal, for 625 lineTV systems (European), and 720 and 240 for 525 line TV systems (Ameri
an).In digital video 
oding, however, two di�erent formats are typi
ally used: CIF (Common In-termediate Format) and QCIF (Quarter-CIF). Both have a 4:2:0 sampling, meaning that the
hroma signals are also verti
ally subsampled by a fa
tor of 2 relative to the luma signal, andboth are progressive. The number of samples in CIF is 352 horizontally and 288 verti
ally forthe luma signal. In QCIF it is 176 horizontally and 144 verti
ally for the luma signal. Theimage rate in both 
ases is 30 Hz. Both formats were 
hosen as intermediates between theEuropean SIF (Standard Inter
hange Format) format, with 25 Hz image rate and 352 by 288samples, and the Ameri
an SIF format, with 30 Hz image rate and 352 by 240 samples (bothresult in the same total number of samples per se
ond). It is an intermediate format be
ause271
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it requires time resampling to go from European SIF to CIF, and spa
e resampling to go fromAmeri
an SIF to CIF. In pra
ti
e, though, European SIF sequen
es are often used as if theywere CIF. Hen
e, in the list of test sequen
es in Se
tion A.2, the image rate is always indi
ated,if available. This in
onsisten
y has very little impa
t on the performan
e of the algorithmspresented in this thesis, though.Another in
onsisten
y has to do with the relative sample lo
ations between luma and 
hromasamples. The de�nitions of CIF and QCIF in H.261 and H.263 [62, 63℄ spe
ify that 
hromasamples are lo
ated in the middle of the 
orresponding four luma samples in ea
h 2� 2 blo
k.However, MPEG-4 [77℄ spe
i�es that 
hroma samples are lo
ated in the middle of the twoleft luma samples in ea
h 2 � 2 blo
k, whi
h is 
ompatible with the format spe
i�ed by theITU-R Re
ommendation BT.601-2 [20℄. Hen
e, in the list of Se
tion A.2, sequen
es whi
hare oÆ
ial MPEG-4 test sequen
es are indi
ated expli
itly. Those sequen
es have the ITU-RRe
ommendation BT.601-2 positioning of samples, while the other sequen
es are believed tohave the H.26x positioning of samples. Again, this small in
onsisten
y has very little impa
ton the performan
e of the algorithms presented in this thesis.Some algorithms in the thesis, notably the segmentation ones in Chapter 4, make use of theR0G0B0255 
olor spa
e, where all 
olor 
omponents have the same number of pixels (no subsam-pling), and the samples of the three 
olor 
omponents have the same lo
ations. Conversion fromthe Y 0CBCR CIF and QCIF format to R0G0B0, with the same number of samples as the lumasignal, has been performed in two steps. In the �rst step, the 
hroma signals have been upsam-pled by a fa
tor of 2 horizontally and verti
ally through simple repetition (sample-and-hold).Then, the following 
olor spa
e transformation has been performed for ea
h pixel:R0255 = �596 � (Y 0 � 16) + 817 � (CR � 128)�==9;G0255 = �596 � (Y 0 � 16)� 201 � (CB � 128)� 416 � (CR � 128)�==9, andB0255 = �596 � (Y 0 � 16) + 1033 � (CB � 128)�==9;where ==9 means rounded division by 29 = 512. The 
al
ulations have thus been performed ininteger arithmeti
. The transformation was taken from [164℄, but an extra bit of pre
ision wasadded.
A.1.1 Aspe
t ratiosSequen
es in the ITU-R Re
ommendation BT.601-2 format are obtained through sampling ofTV signals with a pi
ture aspe
t ratio of 4/3. The CIF and QCIF sequen
es are typi
allyobtained by subsampling sequen
es in the ITU-R Re
ommendation BT.601-2 format. Hen
e,the pro
edure for obtaining a CIF sequen
e from a ITU-R Re
ommendation BT.601-2 Europeansequen
e is:

1. Drop the se
ond �eld in ea
h frame. The result is a 25 Hz sequen
e with 288 lines of 720luma pixels and 360 
hroma pixels.2. Subsample both the luma and 
hroma signals by a fa
tor of two horizontally (the �ltersfor the 
hroma signals are di�erent a

ording to the desired sample positioning: H.26x
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or MPEG-4). Ea
h result image will thus have 288 lines with 360 luma samples and 180
hroma samples, 
orresponding to an image area with 4/3 aspe
t ratio.3. Subsample the 
hroma signal by a fa
tor of two verti
ally. The resulting images thus have288 lines of 360 luma pixels and 144 lines of 180 luma pixels.4. For ea
h luma line, drop the �rst and the last four pixels. Also drop the �rst and the lasttwo pixels of 
hroma. The result will have the CIF spatial format, though with a 25 Hzimage rate.5. Resample the images in time to go from 25 Hz to 30 Hz.

The 
onversion to QCIF is usually performed from the CIF sequen
es and involves only sub-sampling.Hen
e, it 
an be easily 
on
luded that the aspe
t ratio of the CIF and QCIF pixels is 43603288 , whi
his 16=15. However, some authors mention a slightly di�erent value of 128=117 (
f. 16=15 =128=120), arguing that not all of the 720 samples, only 702, are viewable in the 4/3 s
reen [168℄.
A.2 Test sequen
es
In this thesis the only formats used are CIF and QCIF, though with the nuan
es mentioned inthe previous se
tion. Sequen
es may be quali�ed by the a
ronym of their format, su
h as CIF\Carphone" or QCIF \Foreman". When they appear without any quali�er, the format shouldbe understood to be CIF, unless it is 
lear from the 
ontext that the format is QCIF. Theimages in the sequen
es are numbered from zero, i.e., the �rst image is image 0. The sequen
esused are des
ribed below (the �rst images of ea
h sequen
e are shown in Figures A.1 and A.2).The 
on
ept of 
lass, de�ned in Chapter 4, is used in the des
riptions:
\Carphone" (CIF and QCIF, 25 Hz, 382 images)Videotelephony sequen
e on a mobile, 
ar mounted devi
e. The sequen
e exhibits 
ameravibration and ba
kground motion (the lands
ape seen through windows). Most of thetime it is a 
lass 4 sequen
e. [Shot by Siemens, Germany, for the CEC RACE MAVTproje
t.℄\Claire" (CIF and QCIF, 25 Hz, 494 images)Videotelephony sequen
e on a studio with a �xed and relatively uniform light ba
kground.The ba
kground, however, is quite noisy, making it hard for motion estimation. It is atypi
al 
lass 1 sequen
e. [Shot by CNET, Fran
e.℄\Coastguard" (CIF and QCIF, 25 Hz, 300 images, MPEG-4)Outdoors s
ene showing part of a river with two moving boats and water movement, andshowing also the bank of the river.1 It has several panning 
amera movements.1Images 277 and following are 
orrupted, so \Coastguard" has really 277 images.
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\Flower Garden" (CIF only, 25 Hz, 125 images)Camera traveling movement over a s
ene with a sloping garden and a row of houses. Inthe �rst plane, though out of fo
us, the trunk of a tree.\Foreman" (CIF and QCIF, 25 Hz, 300 images, MPEG-4)Videotelephony sequen
e on a mobile, hand-held devi
e. Small panning 
amera move-ments o

ur, together with some rotation of the 
amera around its lens axis. The �nalpart is a large panning movement in whi
h the speaker disappears from the image. Inthis last part the 
amera rotation movements are more prominent. Most of the time it isa 
lass 4 sequen
e. [Shot by Siemens for the CEC RACE MAVT proje
t.℄\Grandmother" (QCIF only, 25 Hz, 870 images)Videotelephony sequen
e with a �xed ba
kground, 
ontaining parts of a sofa and leavesof a plant against an uniform wall.\Miss Ameri
a" (CIF and QCIF, 30 Hz, 150 images)Videotelephony sequen
e on a studio with a �xed and uniform dark ba
kground.2 It haspoor 
ontrast between the ba
kground and the speaker, notably be
ause of the dark hair.It is a 
lass 1 sequen
e.\Mother and Daughter" (QCIF only, 25 Hz, 961 images)Videotelephony sequen
e with a �xed ba
kground 
ontaining parts of a sofa and a pi
tureagainst an uniform wall.\Salesman" (CIF and QCIF, 30 Hz, 449 images)Videotelephony sequen
e in a home or oÆ
e environment with a �xed, highly non-uniformand stru
tured ba
kground. The speaker sometimes nearly stops. It is a typi
al 
lass 2sequen
e.\Stefan" (CIF and QCIF, 25 Hz, 300 images, MPEG-4)Sports TV sequen
e with a tennis player on a rather uniform tennis �eld and with tex-tured publi
 in the seats. The sequen
e has strong panning movements and some zoommovements.\Table Tennis" (CIF and QCIF, 25 Hz, 300 images, MPEG-4)Television sequen
e of a table tennis game. It has two di�erent shots with a 
lear sepa-ration. The �rst shot has a 
lean zoom movement approximately between images 20 and107. The ba
kground is �nely textured. [Shot by CCETT, Fran
e.℄\Trevor" (CIF and QCIF, 25 Hz, 150 images)Video
onferen
e sequen
e on studio with �xed but non-uniform ba
kground.3 It is dividedin two shots, the �rst merging through an average image (image 59) to the se
ond. The�rst shot is a verti
ally split two-view video
onferen
e s
ene in a studio, with severalpersons in ea
h view. It has 59 images (0 to 58). The se
ond shot (Trevor, one maypresume) is a typi
al head and shoulders s
ene with 90 images (60 to 149), whi
h may beseen as videotelephoni
. The se
ond shot is 
lass 2. In the text, only the se
ond shot isused. [Shot by BTRL, UK.℄2The CIF version of \Miss Ameri
a" has really 360 pixels per line.3The CIF version of \Trevor" is available only as part of the \VTPH" sequen
e, see below.
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Additionally, there is a sequen
e 
alled \VTPH" (
reated by CSELT, Italy) whi
h was editedfrom \Claire", \Miss Ameri
a", and \Trevor". It has 160 images (0 to 159), the �rst 80 
omingfrom the beginning of \Claire" (with a temporal subsampling of 3, so that only every thirdimage are extra
ted, from 0 to 3 � 79), the next 51 (80 to 130) 
oming from the beginning of\Miss Ameri
a" (also with a temporal subsampling of 3),4 and the last 29 (131 to 159) 
omingfrom \Trevor", starting at image 60 (also with downsampling of 3, from 60 to 60+3�28). Thesequen
e is thus a 
on
o
tion whi
h simulates a hypotheti
al videotelephony 
onferen
e talkshot at 10 Hz.5

4It should be noti
ed that the \Miss Ameri
a" part of the sequen
e su�ers from two problems, whi
h in noway invalidate the results of the simulations. Firstly, the images are missing 12 lines at its top (
orrespondingto ba
kground), and have the same number of lines of noise in the bottom. Se
ondly, image 100 of the \VTPH"sequen
e is a repetition of image 99, i.e., images 19 and 20 of the \Miss Ameri
a" shot are equal (both 
orrespondto image 57 in the original \Miss Ameri
a" sequen
e).5Rigorously speaking, the \Claire" and \Trevor" parts are 25=3 Hz.
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(a) \Carphone" image 0. (b) \Claire" image 0 (image 0 of\VTPH").

(
) \Coastguard" image 0. (d) \Flower Garden" image 0.

(e) \Foreman" image 0. (f) \Grandmother" image 0.
Figure A.1: The test sequen
es.
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(a) \Miss Ameri
a" image 0 (image80 of \VTPH"). (b) \Mother and Daughter" image 0.

(
) \Salesman" image 0. (d) \Stefan" image 0.

(e) \Table Tennis" image 0. (f) \Trevor" image 60 (image 131 of\VTPH").
Figure A.2: The test sequen
es (
ontinued).
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Appendix B
The Frames video 
oding library

It has been often said that a person does not re-ally understand something until after tea
hing itto someone else. A
tually a person does not re-ally understand something until after tea
hing itto a 
omputer ... Donald E. Knuth
The Frames library of ANSI-C fun
tions was developed to simplify the task of writing video
oding and image pro
essing algorithms:1. Frames is free, it is under the GPL (GNU General Publi
 Li
en
e) of the FSF (FreeSoftware Foundation);2. Frames's 
urrent version is 3.2;3. the Frames do
umentation 
an be found in [118℄, though the do
ument re
e
ts version 2of the library; and4. Frames will soon be put into an FTP (File Transfer Proto
ol) site; for the time being 
opiesof Frames 
an be asked from the author by sending email to Manuel.Sequeira�is
te.pt.Frames was started in July 1992, and has been evolving ever sin
e. It had small but signi�
ant
ontributions made by Carlos Arede, Diogo Dias Cortez Ferreira, Paulo Correia, and, spe
ially,Paulo Jorge Louren�
o Nunes. The bug reports of many users of the library were also a greathelp.The next se
tions brie
y des
ribe the Frames library.

279
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B.1 Library modules
This library is 
omposed of several modules, ea
h of whi
h de�nes data and fun
tions withrelated purposes. A list of the 
orresponding header (interfa
e) �les and a brief des
ription ofea
h is given below (the pre�x of fun
tions, ma
ros, types and global variables is shown betweenbra
es). The modules are always des
ribed through their header �les.

1. Basi
 header �les:frames.h { in
ludes all headers from the library, thus giving a

ess to all its data stru
-tures, ma
ros, and fun
tions.types.h { de�nes several basi
 types and ma
ros; all other header �les in
lude this one.errors.h { fERRg implements 
onsistent error pro
essing a
ross the library.io.h { fIOg basi
 input/output fun
tions (partially substitutes stdio.h).matrix.h { fMg de�nes (3D) matrix data types and a wealth of fun
tions whi
h operatewith them.mem.h { fMEMg memory allo
ation module.sequen
e.h { fSg implements data stru
tures and fun
tions for dealing with video se-quen
e �les.2. Main header �les:arguments.h{ fARGg tools for 
ommand line argument pro
essing.bitstring.h{ fBSg module dealing with strings 
ontaining only 
hara
ters '0' and '1', whi
hare interpreted as numbers in binary representation.buffer.h{ fBg general bu�er tools (
urrently de�nes a bit bu�er �le designed for bit-levelreading and writing).
h
.h{ fCHCg tools for Cooperative Hierar
hi
al Computation analysis of images [16℄.
olorspa
e.h{ fCSg tools for 
olor spa
e spe
i�
ation and 
onversion.
ontour.h{ fCg tools for 
ontours and partition matri
es.d
t.h{ fDCTg fun
tions for 
al
ulating the DCT.draw.h{ fDg fun
tions for drawing on image matri
es.filters.h{ fFg dis
rete 2D or 3D image �lters and operators.
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fstring.h{ fFSg module de�ning a spe
ial type of 
hara
ter string, 
ompatible with all ANSI-Cstring fun
tions, whi
h 
an be made to grow automati
ally as needed when fun
tionsfrom this pa
kage are used.getoptions.h{ fGOg tools for pro
essing 
ommand line arguments. It performs a similar fun
tionto arguments.h, though it is simpler and easier to use.graph.h{ fGg tools for pro
essing simple graphs.heap.h{ fHPg implementation of heaps, i.e., eÆ
ient hierar
hi
al (or priority) queues.list.h{ fLg implementation of simple lists.ma
hine.h{ ma
hine dependen
ies �le (generated during installation).mmorph.h{ fMMg mathemati
al morphology operators (but no watersheds...).motion.h{ fMDg tools for motion dete
tion and estimation.options.h{ fOPTg fun
tions to use together with arguments.h for 
ommand line option pro-
essing.parse.h{ fPg a simple parser of option �les.qsort.h{ fast ma
ros for sorting ve
tors (faster than using the ANSI-C library fun
tionqsort()).random.h{ fRANDg pseudo-random number generators.sele
t.h{ fast ma
ros for sele
ting the nth largest element of a ve
tor.spiral.h{ fSPg fun
tions dealing with spirals and distan
es in latti
es.spline.h{ fSPLg fun
tions for 
al
ulating the 
oeÆ
ients of splines.splitmerge.h{ fSMg framework for segmentation algorithms with a split phase and three mergephases (see [33℄).string.h{ fun
tions working on strings whi
h 
omplement the ANSI-C libraries.vl
.h{ fVLCg tools for VLCs.
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A brief des
ription of the most important modules (header �les) is given in the se
tions below.
B.1.1 types.h
Digital images have usually well de�ned sizes, in bits, for storing ea
h 
olor 
omponent of thepixels. Being so, it is very important for an image pro
essing library to de�ne appropriate typeswith �xed, ma
hine independent sizes. It is the main purpose of this module. It de�nes integertypes with 8, 16, and 32 bits, signed and unsigned. If the ma
hine does not support su
h a setof integers, the library will not 
ompile. It also de�nes a boolean type whi
h is missing in C.For reasons of 
onsisten
y, this module also de�nes 
oating point types, though with ma
hinedependent sizes and pre
isions. Several general purpose ma
ros are also de�ned in this module.
B.1.2 errors.h
Error 
onditions are dealt with in a 
onsistent way a
ross this library. Usually fun
tions wherea fatal error o

urs return an error indi
ation (in the form of a spe
ial return value) and storeinformation about the error in variables internal to the errors.h module, the so-
alled error
ags. The user may then 
he
k for errors and pro
eed appropriately, e.g. by aborting exe
utionand printing an error message. If ma
ro DEBUG is de�ned in this module at 
ompile time, thenerror messages are printed immediately as they o

ur. The same behavior 
an be obtained usingthe one of the module fun
tions. In any of these 
ases, the program will be said to be in debugstate.There are three 
lasses of events: errors, warning and diagnosti
. Non fatal events (i.e., warningsand diagnosti
s), do not set the error 
ags. Messages are printed only if the program is in debugstate for the 
orresponding 
lass of events, otherwise nothing is done. There are fun
tions for
hanging the debug state of ea
h of the event 
lasses. It is also possible to 
lear error 
onditionsand to ask for a string des
ribing the 
urrent error.
B.1.3 io.h
This module de�nes types and fun
tions whi
h deal with basi
 input/output. It 
ontains basi-
ally substitutes for the ANSI-C stdio.h fun
tions and types. As with some of the fun
tionsof mem.h, this was done to provide 
onsistent error 
he
king a
ross the library. It also 
ontainsprovision to atta
h a debug output stream to any given output stream. This allows printing
ommands to print to the two streams. This may be used to send to the terminal all the textthat is also printed in a given �le.
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B.1.4 mem.hThis module provides the same fun
tionality as the memory management fun
tions of ANSI-C,though with error pro
essing 
onsistent with the rest of the pa
kage (see Se
tion B.1.2). It alsoadds a few fun
tions simplifying the task of dealing with 2D and 3D dynami
 arrays of anytype.
B.1.5 matrix.hThe matrix module de�nes types and fun
tions dealing with matri
es (3D arrays of elementsof the basi
 types). Even though all matri
es are really 3D, and hen
e organized into planes,lines, and 
olumns, the user may use them as 2D matri
es almost transparently. Matri
es 
anbe either temporary or permanent. The validity of permanent matri
es is not a�e
ted by anyfun
tions in this module ex
ept for the memory freeing fun
tions. Temporary matri
es are usedto store intermediate results of matrix operations and are destroyed immediately after beingused.For fun
tions whi
h require a matrix to store the operation result, a null return matrix passedas an argument will for
e the 
reation of a temporary matrix. Temporary matri
es are freedautomati
ally when passed as operands (and not as result matri
es) of matrix fun
tions (ex
eptfor output fun
tions and ex
ept for self operating fun
tions). Temporary matri
es 
an be setpermanent and vi
e versa.Aside from permanent or temporary, matri
es 
an also be 
ategorized as:1. sub-matri
es vs. �rst-hand,2. 
ontiguous vs. non-
ontiguous,3. stati
 vs. dynami
,4. restri
ted vs. full.Sub-matri
es are just like regular matri
es ex
ept that the data they refer to belongs to anothermatrix. Sub-matri
es 
an be used to refer to part of matrix (e.g., only even lines) withoutworrying about indexing issues. Changing the original matrix will 
hange 
orrespondingly thesub-matrix (sin
e their data is the same), and vi
e versa.Contiguous matri
es have their planes and lines stored one after another in memory withoutgaps. This means their data 
an be a

essed as a large ve
tor having the same number ofelements as the matrix itself. Contiguousness 
an 
onsiderably in
rease the speed of somematrix fun
tions. Usually sub-matri
es are also non-
ontiguous.Regular matri
es are dynami
, and are 
reated by fun
tions of this module. However, somefun
tions allow you to \fool" the library by masking an existing matrix so that it looks like alibrary matrix. These matri
es are named stati
 be
ause their data is not freed by fun
tions ofthe Frames pa
kage.Also, ea
h matrix 
an be in restri
ted mode. In this mode, the number of planes, lines, and
olumns of the matrix are set as if the matrix were smaller then its real size. This allows
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fun
tions to operate on a small window of the real matrix without having to use spe
ial fun
tionsor worrying about indexing issues. It also allows the remaining elements of the matrix to bea

essed using otherwise invalid indi
es. Restri
ting is reentrant and reversible: a matrix maybe restri
ted any number of times and then unrestri
ted su

essively.This module 
ontains a large number of fun
tions operating on matri
es. Spe
ial versions ofthe fun
tions are also usually available. Fun
tion with names ending in S store the result in the�rst operand matrix, and thus do not have a result argument. Fun
tions with names ending inS
 use as se
ond operand a s
alar value instead of a matrix. Fun
tions with names ending inS
S use as se
ond operand a s
alar value instead of a matrix and store the result in the �rstoperand. Fun
tions with names ending in P work only on a 3D sub-matrix (for 2D matri
es thesuÆx R may be used). Of 
ourse, 
ombinations of P or R with S and S
 are possible.
B.1.6 sequen
e.hThis module de�nes fun
tions and types whi
h simplify reading and writing the �les 
orrespond-ing to sequen
es of images. At present only the IST sequen
e format is supported (see [118℄for a des
ription of the format). The reading and writing fun
tions are 
apable of automati

olor spa
e 
onversion. Support for pixel aspe
t ratios, di�erent bits per pixel formats, et
. isprovided. Images are read and written using matri
es (see previous se
tion). Use of 3D matri
esallows several images to be read or written at the same time.
B.1.7 
ontour.hThis module deals with 
ontours and partitions. It 
ontains fun
tions dealing with partitionmatri
es, 
ontour matri
es, 
ontours, et
. Fun
tions for 
al
ulating the 
onne
ted 
omponentsof label images are also provided.
B.1.8 d
t.hThis module 
ontains fun
tions for 
al
ulating the DCT and its inverse. The fun
tions werebuilt spe
ially for 2D DCTs over re
tangular regions. The 
al
ulations are performed in inte-ger arithmeti
 with a pre
ision spe
i�ed by the user. Provision for 
he
king whether a givenpre
ision 
omplies with the IEEE (The Institute of Ele
tri
al and Ele
troni
s Engineers, INC.)standard 1180-1990 is also in
luded. Complian
e with that standard is required by most video
oding standards.
B.1.9 filters.hThis module 
ontains fun
tions that �lter matrix images in several ways. Essentially two typesof fun
tions exist: those whi
h operate on isolated pixels (s
alar �lters) and those whi
h oper-
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ate over windows or neighborhoods (windowed �lters). In general the size of the windows orneighborhoods is en
oded in the fun
tion name.The fa
t that the value of a pixel depends on the values of a surrounding window poses someproblems near the borders of the images. By default, the fun
tions adapt to this situation byredu
ing the number of pixels available for 
al
ulation. When other solutions are used theyare expli
itly en
oded in the fun
tion name by means of a post�x. Currently, the only post�xavailable is M, when the value of inexistent pixels beyond the image borders are obtained byre
e
tions of the existing pixels (mirror e�e
t).Two other post�xes exist (unrelated to windowing e�e
ts near borders, though): T and Tr. The�rst is used when the �lter result is thresholded so that the output is either 1 or 0 a

ordingto whether the result is larger than the threshold or not (the threshold is passed as the lastargument of the fun
tion). Tr is used when the �ltered result is 
al
ulated using trun
ationinstead of rounding (of 
ourse, this only make a di�eren
e for integer matri
es).Yet another 
ategory of �lters exists: those whi
h interpret the images as being binary. Forthese fun
tions a zero is a zero, anything di�erent from zero is seen as a one. Instead of beingpre�xed by F these fun
tions are pre�xed by Fb.With some ex
eptions, the fun
tions in this module are very similar to the ones of the matrixmodule. When an input matrix in temporary, it is freed. When the output matrix does notexist, a temporary matrix is 
reated.
B.1.10 graph.hThis module deals with simple graphs. It will soon be extended to deal also with pseudographs.It was implemented so that:1. user data is easily asso
iated with both verti
es and ar
s;2. verti
es and ar
s have an asso
iated label and weight;3. when 
ertain operations are done over a graph or one of its ar
s or verti
es, appropriateuser fun
tions (
alled hooks) are invoked;1 and4. even if it implies additional memory expenditure and redundan
y, the data stru
turerepresenting a graph is easily a

essible in several ways (there is a list of all ar
s, a list ofall verti
es, and ea
h vertex 
ontains a list of its own ar
s).Fun
tions are available for inserting and removing verti
es and ar
s to and from a graph, forperforming mergings and splits of verti
es, for 
oloring a graph, et
.
B.1.11 heap.hOften image pro
essing tasks su
h as segmentation, edge dete
tion, and motion estimation,require the minimization of 
ost fun
tionals. Some of the optimization te
hniques whi
h 
an be1In a sense, this allows users to sub-
lass the graph data stru
ture.
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used to solve su
h a minimization problem require that one keeps tra
k of the element of a sethaving the minimum value, where the set 
an vary along the optimization.This module de�nes a data stru
ture and fun
tions whi
h help to tra
k very eÆ
iently theminimum value in a 
hanging set of elements, ea
h with an asso
iated value. The module isvery eÆ
ient provided that:1. after ea
h 
hange in the set, the number of eliminated elements is small 
ompared withthe 
ardinal number of the set; and2. ea
h set 
hange should a�e
t the values of a small number of set elements;where a set 
hange means the total 
hanges required so that the next iteration of the algorithm
an pro
eed, that is, all the 
hanges until the new minimum value in the set is required.Tra
king of minima is done by asso
iating a heap tree stru
ture to the user data stru
ture
ontaining the elements from whi
h the minimum is to be found.The heap trees de�ned in this module are basi
ally binary trees with N leaves, where N is thenumber of elements of the set from whi
h the minimum is to be tra
ked. Ea
h node, ex
eptthe leaves, has two 
hildren (bran
hes). The leaves store (as generi
 pointers) the user dataasso
iated to the elements of the set. All other non-leaf nodes, when the heap tree is arranged,store the smallest of their 
hildren's value. Hen
e, in an arranged heap tree, the root nodealways stores the smallest value of the set. More about heaps (of a slightly di�erent type) 
anbe found in [28, 165℄.
B.1.12 motion.hThis module deals with motion dete
tion and estimation. The fun
tions 
urrently de�ned dealonly with blo
k mat
hing motion estimation. Several fun
tions are available, allowing for anumber of variations of the basi
 blo
k mat
hing algorithm. Pixel masks and lists of validmotions 
an be provided to the fun
tions. It is also possible to use short-
ir
uited 
al
ulationwhi
h 
onsiderably de
reases running time. When two or more motion ve
tors yield the sameminimum error, the full sear
h fun
tions in this module are guaranteed to return the smallestof those motion ve
tors in terms of the usual Eu
lidean norm (but without pixel aspe
t ratio
orre
tion), ex
ept when a list of valid motion ve
tors is provided, in whi
h 
ase the �rst ofthe motion ve
tors in the list leading to the minimum error is sele
ted. This allows n-stepalgorithms, or even pixel aspe
t ratio 
orre
ted Eu
lidean distan
es, to be used.
B.1.13 splitmerge.hThis module deals with RSST segmentation algorithms, despite its name. The user 
ontrolsthe merging and splitting 
riteria and s
hedule, so the module is fully 
on�gurable. It makesuse of the graph.h and heap.h modules. The results of all RSST segmentation algorithms inChapter 4 were obtained by software using this module. Full support for 3D segmentation isprovided.
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The user 
on�gures the segmentation by providing the data to segment, usually some images,and by providing points to hook fun
tions to be 
alled in parti
ular pla
es of the algorithm.Hen
e, the user 
an spe
ify what happens when two regions are merged or split, when anadja
en
y ar
 is 
hanged, whether to regions should be merged or split, whi
h regions shouldbe merged �rst, et
. The module also makes an a

ounting of region areas (or volumes) andborder lengths (or areas) to whi
h the user 
an refer whenever ne
essary.
B.2 An example of use
Sin
e this appendix only 
ontains a very brief des
ription of the Frames library, an example ofuse follows whi
h 
an make the 
apabilities of the library more 
lear.
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ription:* Segmentation as spe
ified in the Vla
hos and Constantinides* paper (1993), but with an initial split phase (whi
h 
an be* eliminated). See my PhD thesis for details.** Authors:* Manuel Menezes de Sequeira, IST.** History:* Author: Date: Notes:* MMS 1998/8/28 first release** This file is part of the frames library: a library of C fun
tions* for video 
oding and image pro
essing.** Copyright (C) 1998 Manuel Menezes de Sequeira (IT, IST, ISCTE)** This library is free software; you 
an redistribute it and/or* modify it under the terms of the GNU Library General Publi
* Li
ense as published by the Free Software Foundation; either* version 2 of the Li
ense, or (at your option) any later version.** This library is distributed in the hope that it will be useful,* but WITHOUT ANY WARRANTY; without even the implied warranty of* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU* Library General Publi
 Li
ense for more details.** You should have re
eived a 
opy of the GNU Library General Publi
* Li
ense along with this library (see the file COPYING); if not,* write to the Free Software Foundation, In
., 675 Mass Ave,* Cambridge, MA 02139, USA.*/#in
lude <frames/splitmerge.h>#in
lude <frames/mem.h>#in
lude <frames/matrix.h>#in
lude <frames/sequen
e.h>#in
lude <frames/getoptions.h>#in
lude <frames/errors.h>/* Global information about a segmentation: */typedef stru
t fMatrixub R, G, B; /* the image data (matri
es ofunsigned bytes). */ubyte maxDR; /* maximum region dynami
 range. */dword maxRegs; /* maximum final number ofregions. */g segmentation;/* Region data: */typedef stru
t fdfloat avgR, avgG, avgB; /* average of 
olor 
omponents. */ubyte minR, minG, minB; /* minimum of 
olor 
omponents. */ubyte maxR, maxG, maxB; /* maximum of 
olor 
omponents. */g region;/* Border data (a
tually, set of borders to the same adja
entregion): */typedef stru
t fdfloat errContr; /* 
ontribution of border elimination(region merging) to globalerror. */g border;

/* When a new region is 
reated: */stati
 void *newRegion(SMregion *smreg, SMpartition *part)f segmentation *seg = part->data; /* get segmentationinformation. */SMpppd p = *smreg->pppds; /* to get re
tangular region size. */region *reg; /* pointer to new region. */reg = MEMallo
(sizeof(region)); /* 
reate new region. *//* Cal
ulate average of 
olor 
omponents in region: */reg->avgR = MsumubP(seg->R, p.p, p.l, p.
, p.np, p.nl, p.n
) /smreg->size;reg->avgG = MsumubP(seg->G, p.p, p.l, p.
, p.np, p.nl, p.n
) /smreg->size;reg->avgB = MsumubP(seg->B, p.p, p.l, p.
, p.np, p.nl, p.n
) /smreg->size;/* Cal
ulate dynami
 range of 
olor 
omponents in region: */reg->maxR = MsmaxubP(seg->R, p.p, p.l, p.
, p.np, p.nl, p.n
);reg->minR = MsminubP(seg->R, p.p, p.l, p.
, p.np, p.nl, p.n
);reg->maxG = MsmaxubP(seg->G, p.p, p.l, p.
, p.np, p.nl, p.n
);reg->minG = MsminubP(seg->G, p.p, p.l, p.
, p.np, p.nl, p.n
);reg->maxB = MsmaxubP(seg->B, p.p, p.l, p.
, p.np, p.nl, p.n
);reg->minB = MsminubP(seg->B, p.p, p.l, p.
, p.np, p.nl, p.n
);return reg;g/* When a region is freed: */stati
 boolean freeRegion(SMregion *smreg, SMpartition *part)f MEMfree(smreg->data);return ok;g/* When a new border is 
reated: */stati
 void *newBorder(SMadja
en
y *smadj,SMregion *smreg1, SMregion *smreg2,SMpartition *part)f region *reg1 = smreg1->data; /* get first region data. */region *reg2 = smreg2->data; /* get se
ond region data. */border *bord; /* pointer to new adja
en
y. */bord = MEMallo
(sizeof(border)); /* 
reate new border. *//* Cal
ulate 
ontribution to global error: */bord->errContr = (sqr(reg1->avgR - reg2->avgR) +sqr(reg1->avgG - reg2->avgG) +sqr(reg1->avgB - reg2->avgB)) *smreg1->size * smreg2->size / (smreg1->size + smreg2->size);return bord;g/* When a border is freed: */stati
 boolean freeBorder(SMadja
en
y *smadj, SMpartition *part)f MEMfree(smadj->data);return ok;g
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/* When two regions are merged: */stati
 boolean mergeRegions(SMregion *smreg1, SMregion *smreg2,SMadja
en
y *smadj,boolean bysize, SMpartition *part)f region *reg1 = smreg1->data; /* get first region data. */region *reg2 = smreg2->data; /* get se
ond region data. *//* Cal
ulate the 
olor 
omponent averages for the mergedregions and store them in the first region (reg1), whi
h isthe one remaining after the merge (reg2 is freedeventually): */reg1->avgR = (smreg1->size * reg1->avgR +smreg2->size * reg2->avgR) /(smreg1->size + smreg2->size);reg1->avgG = (smreg1->size * reg1->avgG +smreg2->size * reg2->avgG) /(smreg1->size + smreg2->size);reg1->avgB = (smreg1->size * reg1->avgB +smreg2->size * reg2->avgB) /(smreg1->size + smreg2->size);return ok;g/* When a border needs re
al
ulation (one of the 
orrespondingregions 
hanged): */stati
 boolean re
al
ulateBorder(SMadja
en
y *smadj,SMregion *smreg1, SMregion *smreg2,SMpartition *part)f region *reg1 = smreg1->data; /* get first region data. */region *reg2 = smreg2->data; /* get se
ond region data. */border *bord = smadj->data; /* get border data. *//* Cal
ulate 
ontribution to global error: */bord->errContr = (sqr(reg1->avgR - reg2->avgR) +sqr(reg1->avgG - reg2->avgG) +sqr(reg1->avgB - reg2->avgB)) *smreg1->size * smreg2->size / (smreg1->size + smreg2->size);return ok;g/* De
ide whether to split a re
tangular region: */stati
 boolean shouldSplit(SMregion *smreg, SMpartition *part)f segmentation *seg = part->data; /* get segmentationinformation. */region *reg = smreg->data; /* get region data. *//* Should split only if the dynami
 range of some 
omponentex
eeds the maximum allowable: */return ((reg->maxR - reg->minR > seg->maxDR) ||(reg->maxG - reg->minG > seg->maxDR) ||(reg->maxB - reg->minB > seg->maxDR));g/* Verify whether a border should be eliminated before another: */stati
 boolean eliminateBefore(void *smadj1v, void *smadj2v,void *dummy)f border *bord1 =((SMadja
en
y*)smadj1v)->data; /* get first border data. */border *bord2 =((SMadja
en
y*)smadj2v)->data; /* get se
ond border data. *//* The first border should be eliminated before the se
ond onlyif its 
ontribution to the global error is smaller: */return bord1->errContr < bord2->errContr;g

/* De
ide whether two regions should be merged together: */stati
 boolean shouldMerge(SMadja
en
y *smadj, SMsize nregs,SMmergePhase phase, SMpartition *part)f /* Get segmentation information: */segmentation *seg = part->data;swit
h(phase) f
ase SMbyThresh:
ase SMbySize:/* The RSST segmentation algorithm of Vla
hos andConstantinides has only one merge phase: */return false;
ase SMbyNumber:/* Merge if the number of regions is larger than theallowable maximum: */return nregs > seg->maxRegs;gg/* For segmenting an image: */stati
boolean segmentImage(Matrixdw labels, /* output partition. *//* input image matri
es: */Matrixub R, Matrixub G, Matrixub B,ubyte maxDR, /* maximum dynami
 range. */dword maxRegs, /* maximum number regions. */dword blo
kSize) /* initial split blo
k size. */f /* The partition used by the split and merge module fun
tions: */SMpartition *p;/* Pointer to new segmentation information. */segmentation *seg;/* Create new segmentation: */seg = MEMallo
(sizeof(segmentation));/* Store image data: */seg->R = R;seg->G = G;seg->B = B;/* Store information for split and merge 
riteria: */seg->maxDR = maxDR;seg->maxRegs = maxRegs;/* Initialize segmentation by performing split. The hookfun
tions are passed to 
ustomize the algorithm: */p = SMsplit(R->npla, R->nlin, R->n
ol, blo
kSize,no, /* borders are not 3D. *//* hook fun
tions (user fun
tions): */eliminateBefore, /* border ordering in merge bythreshold and merge by number (inthis 
ase only the latter phaseis used). */NULL, /* border ordering in the merge bysize phase (not used). */newRegion, newBorder, /* new regions and borders. */freeRegion, freeBorder, /* real frees. */freeRegion, freeBorder, /* simple removals. */re
al
ulateBorder, /* re
al
ulating a border. */mergeRegions, /* region merging. */NULL, /* border merging (not used). */NULL, /* broken border (not used). */shouldSplit, shouldMerge, /* split and merge
riteria. */NULL, NULL, /* printing regions (not used). */NULL, /* labeling regions (not used). */seg, /* our segmentation information. */NULL); /* report (not used). *//* Perform the merge steps: */while(SMmergeStep(p) != SMnoMerge)
ontinue;/* Fill partition matrix with the attained partition: */SMlabel(labels,NULL, /* no number of regions ne
essary*/p,1); /* same resolution as input image. */SMfree(p); /* free partition. */MEMfree(seg); /* free segmentation information. */return ok;g
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/* Configuration variables for the segmentation: */stati
 ubyte maxDR; /* maximum dynami
 range. */stati
 dword maxRegs; /* maximum number of regions. */stati
 dword blo
kSize; /* initial split blo
k size. *//* Configuration variables for reading the sequen
e: */stati
 
har *path; /* where to read sequen
es from. */stati
 
har *opath; /* where to write files to. */stati
 dword first, period, total;/* images: first, period, total. *//* For segmenting a sequen
e using the 
onfiguration above: */void segmentSequen
e(
har *partitionName, 
har *sequen
eName)f Sfile in; /* input image sequen
e. */IOfile out; /* output partition file. */dword n, last; /* image 
ounter, last plus one. */Matrixub R, G, B; /* input image matri
es. */Matrixdw labels; /* output partition matrix. *//* Open input image sequen
e: */if((in = SopenFile(path, sequen
eName)) == NULL)exit(EXIT_FAILURE);/* Create input image matri
es: */if(!S
reateRGBBuffers(in, &R, &G, &B))exit(EXIT_FAILURE);/* Create output partition file: */if((out = IO
reatePath(opath, partitionName)) == NULL)exit(EXIT_FAILURE);/* Create output partition matrix: */if((labels = M
reate2Ddw(R->nlin, R->n
ol)) == NULL)exit(EXIT_FAILURE);last = first + (total == 0 ? in->pages : total) * period;/* Cy
le images: */for(n = first;n < last && Sseek(in, n) && SreadRGB(in, R, G, B) == 1;n += period) f/* Segment 
urrent image (n): */segmentImage(labels, R, G, B, maxDR, maxRegs, blo
kSize);/* Write partition matrix to partition file: */Mwritedw(out, labels);gSfreeBuffers(R, G, B); /* free input image matri
es. */Mfreedw(labels); /* free output partition matrix. */S
lose(in); /* 
lose input image sequen
e. */IO
lose(out); /* 
lose output partition file. */g/* Main program: */int main(int arg
, 
har **argv)f GOoptions *options; /* for reading 
ommand line. *//* Enumeration of 
ommand line options: */enum fDYNRANGE, REGIONS, BLOCKSIZE,HELP, ENV, DEF, PATH, OPATH, FIRST, PERIOD, TOTALg;/* Table of 
ommand line options definitions: */
har *table[℄[GO_MAX_SYNONYM℄ = f/* Segmentation options: */f"-mdr", "--maxdynrange", "&12", /* default is 12. */"%argument is maximum dynami
 range."g,f"-mr", "--maxregions", "&10", /* default is 10. */"%argument is maximum number of regions."g,f"-bs", "--blo
ksize", "&16", /* default 16x16. */"%argument is initial split blo
k size."g,/* Help options: */f"-h", "--help", "%shows help and finishes."g,f"--env", "%show environment variables in help."g,f"--def", "%show default values in help."g,/* Sequen
e reading options: */f"-p", "--path", "FRAMESPATH","%argument spe
ifies where to sear
h for sequen
es."g,f"-op", "--outputpath", "FRAMESOPATH","%argument spe
ifies where to write 
reated sequen
es."g,f"-f", "--first", "&0","%argument is the first image to read."g,f"-i", "--in
rement", "&1","%argument is the time period of read images."g,f"-t", "--total", "&0","%argument is the total of images to read (0 means all)."g,

g;/* Number of 
ommand line options: */dword n = sizeof(table) / sizeof(table[0℄);/* Help information: */GOhelp help = f"rsst","segments a sequen
e a

ording to the Vla
hos and"Constantinides paper (1993), but with an initial split""phase.","1.0","August 1998","Manuel Menezes de Sequeira","1998 IT/IST/ISCTE","[options℄ partition sequen
e"g;boolean showEnv = no, showDef = no;
har *partition = NULL;
har *sequen
e = NULL;dword totalArgs = 0;/* Initialize option interpreter: */if((options = GOnew(table, n, argv, help)) == NULL)return EXIT_SUCCESS;/* Interpret options and arguments: */forever fswit
h(GOnext(options)) f/* Segmentation options: */
ase DYNRANGE:maxDR = atoi(GOgetParameter(options));break;
ase REGIONS:maxRegs = atol(GOgetParameter(options));break;
ase BLOCKSIZE:blo
kSize = atol(GOgetParameter(options));break;/* Interpretation events: */
ase GOargument:totalArgs++;if(partition == NULL)partition = GOgetArgument(options);elsesequen
e = GOgetArgument(options);break;
ase GOend:if(totalArgs == 2) fsegmentSequen
e(partition, sequen
e);return EXIT_SUCCESS;gERRprint("Must suply two arguments! (-h for help)");return EXIT_FAILURE;
ase GOinvalid:ERRprint("Invalid option! (-h for help)");return EXIT_FAILURE;/* Sequen
e options: */
ase HELP:GOshowHelp(options, showDef, showEnv);return EXIT_SUCCESS;
ase ENV:showEnv = yes;break;
ase DEF:showDef = yes;break;
ase PATH:path = GOgetParameter(options);break;
ase OPATH:opath = GOgetParameter(options);break;
ase FIRST:first = atol(GOgetParameter(options));break;
ase PERIOD:period = atol(GOgetParameter(options));break;
ase TOTAL:total = atol(GOgetParameter(options));break;ggreturn EXIT_SUCCESS;g
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