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Abstract
Studies of classical musicians have demonstrated that expertise modulates neural responses during auditory perception.
However, it remains unclear whether such expertise-dependent plasticity is modulated by the instrument that a musician
plays. To examine whether the recruitment of sensorimotor regions during music perception is modulated by instrument-
specific experience, we studied nonclassical musicians—beatboxers, who predominantly use their vocal apparatus to
produce sound, and guitarists, who use their hands. We contrast fMRI activity in 20 beatboxers, 20 guitarists, and 20
nonmusicians as they listen to novel beatboxing and guitar pieces. All musicians show enhanced activity in sensorimotor
regions (IFG, IPC, and SMA), but only when listening to the musical instrument they can play. Using independent
component analysis, we find expertise-selective enhancement in sensorimotor networks, which are distinct from changes
in attentional networks. These findings suggest that long-term sensorimotor experience facilitates access to the
posterodorsal “how” pathway during auditory processing.
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Our engagement with music is shaped by a variety of factors,
such as our mood, the setting, the piece itself (Blood and
Zatorre 2001; Zatorre and Salimpoor 2013), or one’s familiarity
with the piece and the genre (Leaver et al. 2009; Dick et al.
2011). It could also depend on whether we can play the

instrument the music is produced with. Playing a musical
instrument requires one to learn execute complex and highly
specific motor movements, often involving multiple effectors,
and to use both auditory and somatosensory information to
guide these actions. Although we think of learning to play an
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instrument as a motoric skill, such musical training also results
in specific changes in auditory perception and attention (Carey
et al. 2015). Short-term training studies also demonstrate that
the neural regions recruited during auditory perception change
when people have motor experience rehearsing the music they
listen to (D’Ausilio et al. 2006; Lahav et al. 2007). More generally,
cross-sectional studies indicate that classical musicians recruit
regions in the dorsal stream to a greater extent than nonmusi-
cians during auditory perception (Zatorre et al. 2007). However,
it is unclear whether experience playing different instruments
with different motor effectors leads to different functional spe-
cializations within musicians, or whether such change is linked
to ear training, (for example, being able to predict typical chord
progressions. To address the issue of effector and instrument-
specificity within musicians during perception, we examine
neural responses during musical listening in 2 groups of non-
classical professional musicians, beatboxers and guitarists, as
well as nonmusicians.

Beatboxers are a group of musicians who use their vocal tract
to produce polyphonic music, during which they often closely
mimic musical instruments. Humans are one of the only pri-
mate species to show highly flexible mastery of the vocal tract,
but previous exploration of complex vocal behavior has relied
on tasks that involve speech or language, or skills that typically
incorporate linguistic elements (e.g., songs that involve words).
Beatboxing is independent of these linguistic elements. Also,
unlike most other kinds of musicianship, beatboxing is typically
not a formally taught skill. It therefore offers an intriguing
model of vocal expertise that has never been systematically
studied. Guitarists, in contrast, offer different insights into
auditory-motor learning, as they produce sound via rapid co-
ordinated movements of both hands on a stringed instrument.
Studying these musicians does not entail the effects of a shared
body of formal musical knowledge, unlike the study of classical
musicians. The beatboxers and guitarists also represent cultural
and social groups that differ somewhat from typically studied
classical musicians. Classical musicians typically start training
very early in life (Corrigall and Schellenberg 2015), are generally
from higher socioeconomic backgrounds (Müllensiefen et al.
2014), and their training has been found to be associated with
increases in attention and IQ (Schellenberg 2006). Nonclassical
musicians have been successfully studied before to elucidate
the neural correlates of improvisation. Research examining jazz
musicians has shown distinct signatures linked to their musical
expertise, such as recruitment of the left supramarginal gyrus in
rhythm perception tasks (Herdener et al. 2014), changes in mis-
match negativity amplitudes linked to overall sound sensitivity
(Vuust et al. 2012), and increased sensorimotor connectivity in
improvisation tasks (Limb and Braun 2008; Pinho et al. 2014).
Here, by studying beatboxers and guitarists in addition to non-
musicians, we examine the extent to which neural changes
linked to musicianship are selective to the domain of sensori-
motor expertise (vocal tract vs. hands). This design also allows
us to probe 2 other issues: 1) whether neural signatures of musi-
cal expertise are observed in nonclassical musicians and
2) the extent to which expertise-related changes generalize to
unlearned musical skills and untrained musical pieces.

Current models of auditory perception suggest that antero-
ventral stream regions are important for object recognition and
identification (the ventral stream extends from primary audi-
tory regions to the anterior temporal poles), whereas regions in
the posterodorsal stream (the dorsal stream extends from pri-
mary auditory cortex to the inferior parietal cortex and premo-
tor cortices) are relevant for spatial processing and calculating

auditory-motor transformations (Rauschecker and Scott 2009;
Lima et al. 2016). A hallmark of classical musical expertise is
greater activity in dorsal stream regions when listening to
music (Zatorre et al. 2007), and this activity is thought to reflect
long-term learning of associations between a sequence of motor
actions and a sound stream. This modulation of dorsal stream
regions has been demonstrated in short-term training studies
of novices learning piano music (Lahav et al. 2007; Chen et al.
2012; Herholz et al. 2015), studies examining musicians versus
nonmusicians (Chen et al. 2008b; Grahn and Rowe 2009), and in
studies that have examined motor cortex excitability in musi-
cians (D’Ausilio et al. 2006; Rosenkranz et al. 2007). However,
these studies have either grouped together different kinds of
classical instrumentalists (Chen et al. 2008a; Grahn and Rowe
2009), or studied responses in only one musician group (Bangert
et al. 2006; D’Ausilio et al. 2006; Gebel et al. 2013; Kajihara et al.
2013), comparing activity in musicians to nonmusicians. This
does not allow us to address whether dorsal stream activity is
related to instrument-specific sensorimotor repertoires in musi-
cians (e.g., such differences are seen in the domain of dance,
Calvo-Merino et al. 2005). If differences in dorsal stream activity
are driven by sensorimotor knowledge and experience, we
would predict that musicians who use different motor effectors
to play their instruments might show distinct profiles of dorsal
stream engagement, as they have different sets of motor exper-
tise and auditory-motor repertoires. Our comparison between
beatboxers, guitarists, and nonmusicians during musical listen-
ing represents a strong test of the hypothesis that activity in
these regions is tightly linked to previous instrument-specific
sensorimotor experience, as we contrast brain activity in musi-
cians who produce music with different effectors (vocal tracts
vs. hands respectively). Studies that have examined the struc-
tural neural basis of instrument-specific expertise provide
suggestive evidence for this prediction. For example, instrument-
specific differences are noted in the motor cortices in keyboard
and string players (Bangert and Schlaug 2006), as well as the
tracts connecting auditory and motor cortices (Halwani et al.
2011; Ruber et al. 2015). Studies of musical production also sug-
gest instrument-specific effects on brain regions, such as
increased responses in larynx motor cortex for opera singers,
and finger representations for instrumentalists (Elbert et al.
1995; Kleber et al. 2010). Finally, an fMRI study of classical musi-
cians, comparing 7 flutists and 9 violinists listening to a trained
piece, also provides some support for our prediction (Margulis
et al. 2009).

Although our hypothesis is that dorsal stream regions are key
regions supporting instrument-specific responses during music
perception, previous research does suggest that instrument-
specific responses are not confined to sensorimotor regions
(Pantev and Herholz 2011). In studies of classical musicians,
such responses have been observed in primary auditory regions,
and extending down the anteroventral stream. When magneto-
encephalography was used to measure the brain responses of
violinists and trumpeters, timbres close to those of the musi-
cians’ principal instrument were associated with enhanced
auditory representations (Pantev et al. 2001). In a small-sample
electroencephalography study, Shahin et al. (2008) demon-
strated that violinists and pianists showed enhanced gamma
band activity for timbres closest to the instruments they played.
This would be consistent with sources in auditory and primary
auditory cortices, suggesting that these regions become tuned
to specific features of the trained instrument. In addition, in the
right posterior superior temporal sulcus, left planum temporale
and left anterior superior temporal gyrus, violinists showed
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greater activity for violin music than actors did (Dick et al. 2011).
Margulis et al. (2009) also report an instrument-specific response
in the left posterior superior temporal sulcus in a small group of
violinists and flutists listening to the same musical piece per-
formed by their own instrument. However, instrument-specific
responses in these early auditory regions are unlikely to reflect
sensorimotor expertise. Instead, such activity possibly reflects
the enhanced experience experts possess identifying various
spectrotemporal and musical properties of these different
sounds (Angulo-Perkins et al. 2014). The posterior superior tem-
poral gyri bilaterally might be spontaneously engaged in finer
auditory categorization for behaviorally relevant sounds. Regions
that are placed more anteriorly in the anteroventral stream,
such as the anterior superior temporal gyrus, are thought to play
a role in speech intelligibility (Scott et al. 2000), and may be
involved with the recognition and prediction of sequential audi-
tory input.

An alternative and nonmotoric account of enhanced activity
in dorsal stream regions (such as inferior frontal and parietal
cortex) during perception is that activity in these regions
reflects domain-general attention or executive control pro-
cesses, in a manner that is not necessarily instrument-specific.
Activity in brain regions such as primary motor cortex, inferior
frontal gyrus and the inferior parietal cortex is influenced by
attention during listening (Dhanjal et al. 2008a; Wild, Davis,
Yusuf, et al. 2012; Möttönen et al. 2014). Classical musicianship
is often associated with domain-general increases in attention
(Strait et al. 2010; Carey et al. 2015) and top-down executive
control (Koelsch et al. 1999). It is thus possible that long-term
improvements in domain-general perception and attention are
responsible for the recruitment of sensorimotor regions during
listening in classical musicians (but see Baumann et al. (2008)).
If this is the case, we would expect to see musicians recruit
dorsal stream regions, but not in an instrument-specific man-
ner. Indeed, instrument-specific expertise effects in dorsal
stream regions and a lack of instrument-specific effects in audi-
tory areas would suggest that sensorimotor experience with an
instrument, and not domain-general attention, enables access
to motor representations during perception. Highly effector-
specific responses during perception, such as beatboxers show-
ing increased activity in mouth regions, and guitarists in hand
regions, would also indicate more specific sensorimotor access,
rather than broad and unspecific attentional activity. However,
one possibility is that we would also observe instrument-
specific modulation of attentional and executive control net-
works. This might indicate that the origin of the activity was
derived from attentional expectancies created from long-term
sensorimotor experience (see Lima et al. 2016, for further dis-
cussion on why sensorimotor activity might be recruited during
auditory perception). Attention could be specifically tuned
towards sounds that musicians have practiced and are familiar
with, as they will be able to make stronger predictions about
these sequences. Indeed, some researchers have suggested that
it is specifically the sensorimotor aspects of musical training
that could strengthen overlapping neural networks for atten-
tion and cognition. For instance, a recent study suggested that
rhythmic expertise, built via long-term percussion training,
shaped attentional and inhibitory control (Slater et al. 2018).
Others have suggested that long-term instrument training
could lead to an automation of task-specific cognitive pro-
cesses, for instance, those involved in creating new musical
sequences and combinations (Pinho et al. 2014). These authors
demonstrated that improvisation training in piano players was
associated with lowered demands on executive networks, and

greater connectivity in sensorimotor networks (also see Limb
and Braun 2008).

Here, we use a three-pronged approach to try and disentan-
gle spontaneous sensorimotor activity from responses that
could relate to domain-general attentional processes. First, our
task involved naturalistic music listening, with no overt task to
perform. This minimizes the engagement of domain-general
regions that are associated with attention, executive control,
and monitoring (Hall et al. 2000; Vannest et al. 2009). Second,
we use novel pieces of music which are selected to highlight
expertise in different forms of beatboxing and guitar playing,
that are unfamiliar to all participants. The use of novel pieces
should avoid the dorsal stream activation related to rehearsal/
familiarity reported in short-term training studies (Lahav et al.
2007). Third, we use a multivariate approach to characterize the
brain networks involved in music perception. Task-based inde-
pendent component analysis (ICA) approaches have been
extensively used to characterize networks that are associated
with executive control and attention (Leech et al. 2011), in both
visual paradigms as well as those involving listening to auditory
stimuli (Braga et al. 2013) or producing speech (Geranmayeh
et al. 2014; Simmonds et al. 2014). It is therefore the perfect
method for exploring the interplay between expertise and
attention as evidenced at the neural level, but has thus far not
been used to study effects of instrument-specific expertise. ICA
takes advantage of inherent fluctuations in fMRI activity to
identify independent spatial networks, which are robust across
task and rest. In task-based ICA, we relate the timecourse of
spatiotemporal networks to the task design, and assess how
each network is influenced by task and subject-factors. We can
consequently identify networks typically associated with senso-
rimotor skill, attention and executive control, and identify
which of these networks are influenced by experience. By using
an ICA-based approach, we can ascertain if 1) musicians show
differential activity in domain-general attentional and executive
control networks relative to nonmusicians and 2) whether this
is true for both musical styles or specific to the one they are
expert in. In addition, we have also used a battery of behavioral
measures (Table 1) to assess and control for any domain-
general effects of expertise.

Our hypotheses are 1) different types of musical experience
will manifest in distinct profiles of sensorimotor engagement
during auditory perception, particularly within the dorsal audi-
tory stream. On the basis of studies that indicate that listening
to hand and mouth sounds produces separable somatotopic
activation in premotor cortex (Gazzola et al. 2006), we further
predict that 2) beatboxers and guitarists will show greater activ-
ity in “mouth” and “hand” motor regions, respectively. This
would indicate that motor experience plays a specific role in
forming perception–production links, as predicted by the asso-
ciative learning account (Heyes 2010). Finally, when using a
multivariate approach to characterize the functional networks
involved in music perception, we expect 3) expertise-driven
effects in sensorimotor networks rather than attentional ones.

Materials and Methods
Participants

We scanned 20 guitarists (2 female), 20 beatboxers (3 female),
and 20 nonmusicians (2 female) with no history of neurological
or audiological disorders. The UCL Research Ethics Committee
approved this study. All participants provided written informed
consent prior to participation.
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Musicianship was defined by a mandatory minimum of 4
years’ experience, which included 1) performing at a profes-
sional level for at least 2 years and 2) at least 2 years more of
training or amateur experience beatboxing or playing the gui-
tar. On average, guitarists had 8.7 years of professional experi-
ence (range: 2–30 years) and 11.6 years of amateur experience
(range: 5–29 years). Beatboxers had 8.2 years of professional
experience (range: 2–25 years) and 11.3 years of amateur experi-
ence (range: 3.5–30 years). None of the guitarists could beatbox.
Although 5 of the beatboxers did have some guitar experience,
they primarily identified themselves as beatboxers. As this was
a much smaller population than guitarists, these beatboxers
were retained in the sample. We also found that guitarists
tended to start playing their instrument earlier than beatbox-
ers, and received more formal musical training (Table 1).

To ensure that the groups were comparable in general cog-
nitive and hearing abilities, all participants completed a hear-
ing test and a set of cognitive tests (Table 1). None of the
participants had hearing loss (the average of hearing thresh-
olds at 500, 1000, and 2000 Hz was <20 dB HL). The pure tone
average of the better ear (Table 1) was also similar in all 3
groups. Groups were also comparable on their age (F[2,57] =
0.93, P = 0.40), nonverbal IQ (as assessed by performance on the
WASI Matrix Reasoning subtest, F[2,57] = 0.87, P = 0.42), and
working memory (calculated using the forward and backward
digit span subtests of the WASI, F[2,57] = 0.54, P = 0.59).

Participants completed a set of tests that assessed their per-
ceptual and musical abilities. Specifically, frequency discrimina-
tion and duration discrimination thresholds were determined
using an adaptive staircase procedure (as described in Boebinger
et al. 2015; implemented in MATLAB toolbox MLP (Grassi and
Soranzo 2009)). Although guitarists had lower thresholds than
beatboxers and nonmusicians on the frequency measure, no dif-
ferences were observed when comparing beatboxers and nonmu-
sicians (Table 1 shows the mean and standard deviation on each

of these measures, Supplementary Table S7 has relevant statis-
tics). No group differences were observed for duration discrimi-
nation. Participants also completed the rhythm judgment
(deciding whether two tunes differed in rhythm) and metric per-
ception (judging whether a tune was a waltz or a march) from
the Montreal Battery of Evaluation of Amusia (Peretz et al. 2003).
On metric perception, only the guitarists had higher scores than
beatboxers and nonmusicians. However, on the rhythm percep-
tion test, both beatboxers and guitarists outperformed nonmusi-
cians (see Supplementary Table S7 for relevant statistics).
Additionally, all participants completed a self-report measure of
musical sophistication, the Goldsmiths Musical Sophistication
Index (Müllensiefen et al. 2014). Here, the beatboxers rated them-
selves similarly to the guitarists on all indices besides formal
training, and their general musical sophistication scores were
significantly higher than those of nonmusicians (Table 1, also see
Supplementary Table S7).

Stimuli

The guitar and beatboxing clips used were novel pieces, and
were unfamiliar to participants. Beatbox pieces were recorded by
a professional beatboxer (H.Y., known professionally as Reeps
One) in an anechoic chamber. A professional guitarist created the
guitar pieces in a studio setting. Both musicians created pieces
that were both technically challenging and aimed at showcasing
a range of styles. These pieces were edited in Audacity to create
clips of durations between 3 and 5 seconds. The intensity of the
clips was root mean square normalized to the same level and
they were presented at a comfortable listening volume.

MRI Acquisition

All MRI data were acquired on a 1.5 T Siemens Avanto scanner
with a 32-channel receive-only head coil. Functional MRI

Table 1. Participant characteristics

Nonmusicians Guitarists Beatboxers

Age 27.8 (8.9) 30.0 (7.8) 26.8 (5.8)
Age of onset n/a 11.2 (2.3) 14.0 (3.8)
Musical training (years) 0.03 (0.1) 5.9 (3.9) 3.1 (4.1)
Professional experience (years) n/a 8.7 (7.3) 8.2 (5.3)
Amateur experience (years) n/a 11.6 (7.2) 11.3 (8.0)
Pure tone average 1.3 (4.0) 1.7 (3.6) 2.7 (5.1)
Cognitive tests
Matrix reasoning ability (scaled) 60.4 (4.7) 57.9 (6.9) 58.2 (7.3)
Working memory 12.8 (3.2) 12 (3.2) 11.7 (3.5)

Perception tests
Metric judgment 25.2 (5.5) 29.9 (0.4) 27.2 (3.8)
Rhythm discrimination 24.1 (3.2) 27.1 (2.5) 26.2 (2.5)
Frequency discrimination threshold 10.6 (7.3) 4.8 (4.4) 8.0 (3.9)
Duration discrimination threshold 28.6 (10.8) 25.3 (13.2) 27.0 (9.3)

Musicality: Goldsmiths Musical Sophistication Index
Active engagement 32.4 (11.6) 50.3 (4.2) 50.5 (6.4)
Perceptual abilities 42.6 (6.6) 56.8 (4.0) 51.8 (7.8)
Musical training 13.3 (6.3) 43.1 (5.1) 34.9 (6.3)
Emotions 31.8 (4.1) 37.2 (3.5) 35.8 (4.6)
Singing abilities 22.0 (8.0) 38.1 (6.1) 35.1 (8.8)
General sophistication 55.1 (14.1) 105.9 (9.0) 100.6 (13.6)

Means and standard deviation for each group are indicated. Measures where there are significant differences between groups are in bold. Data from one beatboxer

were not collected for the metric and rhythm judgment tasks, leaving an N = 19. Data from a different beatboxer for frequency and rhythm discrimination tasks were

lost due to a technical issue, again leaving an N = 19 for these measures from the beatboxers. Additionally, data from one nonmusician were excluded from the fre-

quency discrimination task as it was >3 standard deviations from the average threshold of this group.
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images were acquired using a T2*-weighted gradient-echo pla-
nar imaging sequence, which notionally covered the whole
brain (repetition time: 9.5 s, acquisition time: 3.4 s, echo time:
50ms, flip angle: 90°, field of view: 192 × 224). In total, 40 axial
slices with a thickness of 2mm and an interslice gap of 1mm
were acquired in ascending order. These slices notionally give
whole-brain coverage, but in participants where this was not
possible we aimed to cover frontal, temporal, and inferior pari-
etal regions, and as much of cerebellum as possible. A sparse
acquisition design was used to present the stimuli in silence
(Hall et al. 1999). Stimuli were presented in a 6.1 s silent period,
which was followed by 3.4 s of image acquisition.

Two runs of the listening task were acquired. Each run com-
prised 32 trials of each condition (beatboxing/guitar music)
interspersed with a resting baseline (32 instances of rest) pre-
sented in a pseudorandomized order (the order differed for
each participant). The randomization was constrained so an
instance of each category (beatbox music, guitar music, and
rest) occurred in triads, ensuring that instances of each cate-
gory were never spaced more than 5 trials apart. The onsets of
the musical stimuli were jittered between 0 and 0.5 s. The same
musical pieces were repeated for the second run in a different
order. Participants listened to each of the musical pieces via in-
ear Sensimetric earphones (http://www.sens.com/products/
model-s14/), they were not asked to perform any task as they
listened. Participants were specifically asked not to move their
mouths or hands and to keep their eyes open. Cameras posi-
tioned over the face and dominant hand of the participant
were used to assess compliance with instructions; all partici-
pants followed these instructions.

Interspersed between these two musical listening runs, par-
ticipants completed a run where they listened to unrelated
sounds. The results of this run are not reported in this article.
Following the listening runs, participant also completed a
mouth and hand localizer, where they had to move their hands
or mouths in a sequence of actions in response to visual
prompts. In the hand condition, participants performed biman-
ual sequential actions, touching each of their fingers to the
thumb and then making a fist. In the mouth condition, partici-
pants alternated between pursing the lips and touching the tip
of their tongue to the roof of their mouth. For this run, scan-
ning was continuous (repetition time: 3.4 s, echo time: 50ms,
flip angle: 90°, field of view: 192 × 224). The order of events was
optimized using optseq2 (https://surfer.nmr.mgh.harvard.edu/
optseq). In addition to this localizer, participants also com-
pleted a phonation versus breathing localizer (data not
described here). None of the listening/localiser tasks were
described as the primary task. Instead, participants were sim-
ply informed that they would be listening to sounds in the
scanner, including music and these hand/mouth sounds, and
would be asked to perform specific hand/mouth actions when
they received visual prompts (which they practiced outside of
the scanner).

Finally, a T1-weighted structural scan was also acquired for
registration purposes from all participants (resolution 1 × 1 ×
1mm3, repetition time 2730ms, echo time 3.57ms, flip angle 7°).

Univariate Analyses

Data were analyzed using Statistical Parametric Mapping
(SPM8). Scans were realigned, unwarped, and spatially normal-
ized to 2mm3 isotropic voxels using the parameters derived
from the segmentation of each participant’s T1-weighted

image, and smoothed with a Gaussian kernel of 8-mm full-
width at half maximum.

The 2 stimulus conditions (and 6 movement regressors of
no interest) were entered into a general linear model at the first
level. The canonical hemodynamic response function was used
to model the onsets and durations of the 2 musical conditions.
The “rest” condition provided an implicit baseline. Similar to
Wild, Davis, Johnsrude (2012), we did not correct for serial auto-
correlation due to our long TR. Furthermore, no high-pass filter
was applied to the data. The microtime resolution was set at 18
and the onset time was set to 100. For each subject, we gener-
ated a (beatbox music > rest) and a (guitar music > rest) con-
trast at the first level. These contrast images were used at the
second level in one-sample t-tests to characterize areas where
all participants showed greater activity for (guitar music > rest)
and (beatbox music > rest).

For each subject, we also generated a [beatbox > guitar] con-
trast image at the first level. These contrast images were used at
the second level to conduct statistical tests using the partitioned
error term approach. One sample t-tests for [beatboxing >
guitar] analyzed with an F contrast were used to characterize
areas showing a relative increase in activity to beatboxing or gui-
tar respectively within each group (see Fig. 2A, where [beatbox >
guitar] activity is shown in red–yellow; and [guitar > beatbox]
activity is shown in blue–light blue). To assess the group ×
condition interaction we conducted a one-way ANOVA testing
the effect of group (guitarist/beatboxer/nonmusician) with an F
contrast. In this ANOVA, the factor “group” was specified as
being an independent measure, with unequal variance. To
understand which differences were driving the group × condition
interaction at the whole brain level, the simple effects of beatbox-
ing > guitar for each group difference (e.g., guitarists vs. beatbox-
ers, guitarists vs. nonmusicians, beatboxers vs. nonmusicians)
were assessed with independent samples t-tests for each group
difference inclusively masking within areas that showed the
group × condition interaction. Unless otherwise specified, all sta-
tistical maps are thresholded at a peak level of P < 0.05 (family-
wise-error or FWE corrected at the voxelwise level).

For region-of-interest (ROI) analyses focusing on hand and
mouth regions, we used 2 separate one-sample t-tests, entering
the contrast of [hand > rest] and [mouth > rest], respectively,
from the hand/mouth localiser for all participants. From these
analyses, peak co-ordinates in sensorimotor cortex were
obtained that denoted left hand area [−36 –28 50], right hand
area [38 –28 48], left mouth area [−52 –10 40], and right mouth
area [56 –8 40]. Using the SPM toolbox marsbar, we created 10-
mm spheres centered on these peaks and extracted mean beta
values for the [beatbox > guitar music] contrast for each partici-
pant. Using SPSS, we conducted a 2 × 2 × 3 ANOVA on the
mean beta values to determine if hemisphere (left/right), region
(mouth/hand), and group (beatboxers/guitarists/nonmusicians)
modulated beatbox > guitar activity within these ROIs.

Multivariate Analyses

ICA or Independent Component Analysis is a multivariate anal-
ysis technique that can extract information from the data that
is not always apparent from a subtractive univariate analysis
(Geranmayeh et al. 2014). This approach takes advantage of
fluctuations in fMRI data to separate it into maximally indepen-
dent spatial components, which explain unique variance in the
data. Each component is associated with a timecourse, which
can be related to the task, artifacts related to movement or
blood flow, or both.
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Here, a group concatenation ICA was carried out using
Probabilistic ICA (Beckmann and Smith 2004) as implemented
in MELODIC Version 3.14, part of FSL. In this approach, the data
from all subjects is temporally concatenated, with data from
one subject following the other. We included data from all 60
participants in this analysis, so that we could derive an unbi-
ased set of networks that would represent our 3 groups equally
well. MELODIC does not have any information about the num-
ber of datasets that are provided, or where the separation is
between subjects or runs. The following data preprocessing
was applied to the input data: manual denoising using an ICA
at the single-subject level to remove artifactual components,
registration of this data to standard space, masking of nonbrain
voxels; voxelwise demeaning of the data; and normalization of
the voxelwise variance. When performing ICAs at the single-
subject level, in each participant, components were marked as
signal or noise with reference to the hand-classification
scheme proposed by Griffanti et al. (2017). Components charac-
terized as signal were biologically plausible and in gray matter,
had relatively smooth time series, and were characterized by
power in the low frequencies. Those characterized as noise
included maps commonly associated with motion (for instance,
a ring around the brain), those that closely followed vascula-
ture, or those that appeared nonbiological with a large number
of small, unrelated clusters. If we were unsure about whether a
component represented noise or signal, it was marked as signal
so that it was retained for further analysis. Preprocessed data
were whitened and projected into a 13-dimensional subspace
using probabilistic Principal Component Analysis. The number
of dimensions was automatically estimated using the Laplace
approximation to the Bayesian evidence of the model order
(Minka 2000; Beckmann and Smith 2004). The whitened obser-
vations were decomposed into sets of vectors which describe
signal variation across the temporal domain (time-courses), the
session/subject domain and across the spatial domain (maps)
by optimizing for non-Gaussian spatial source distributions
using a fixed-point iteration technique (Hyvarinen 1999).
Estimated component maps were divided by the standard devi-
ation of the residual noise and thresholded by fitting a mixture
model to the histogram of intensity values (Beckmann and
Smith 2004).

We then evaluated the group spatial components, which are
the output of the MELODIC analysis. Of the 13 components, one
was clearly related to noise and was not analyzed further.
Although the 12 remaining components did overlap spatially,
pairwise spatial correlations between these maps (Supplementary
Fig. S3) did not exceed r = 0.13. We also spatially correlated these
12 components with a reference set of resting state networks
(Smith et al. 2009) to identify domain-general attentional and cog-
nitive control networks at the group level.

Dual regression involves regressing the individual subject
fMRI datasets against the group component spatial maps, the
first output is subject-specific time-courses. As we had 2 runs
for each participant, we used dual regression to extract run-
specific time courses for each subject for each group spatial
component. In a typical dual regression, the next step would be
to regress individual subject fMRI datasets against the subject-
specific time courses to obtain subject-specific component spa-
tial maps. However, while conducting a task-based ICA the
main issue is how well subject-specific component time
courses relate to the applied design matrix. Consequently, we
used the tool fsl_glm to regress the subject-specific time
courses against the design matrix for the task. This was done
separately for each run the participant completed. This allows

us to estimate the contrast of parameter estimate (COPE) for
our contrasts of interest (here, beatboxing vs. rest, guitar music
vs. rest, beatboxing vs. guitar music) for each network. The
COPEs for each contrast were then averaged over the 2 runs for
each participant (i.e., [beatboxing > rest] for run 1 and run 2).
We could then test COPE values across participants to identify
components where activity was greater during [Listening >
Rest] or components where a group × condition interaction was
observed. These statistical analyses were conducted in SPSS
v25.0. Given that ICA is a data-driven, model-free approach, it
is appropriate to correct for multiple comparisons at this stage
of the analysis, resulting in a Bonferroni correction for 12
components.

Structural Analyses

To examine local changes in gray matter volume, structural
data were analyzed with FSL-VBM (Douaud et al. 2007). First,
structural images were brain-extracted and gray matter-
segmented before being registered to the MNI-152 standard
space using nonlinear registration. The resulting images were
averaged and flipped along the x-axis to create a left-right sym-
metric, study-specific gray matter template. Second, all native
gray matter images were nonlinearly registered to this study-
specific template and “modulated” to correct for local expansion
(or contraction) due to the nonlinear component of the spatial
transformation. The modulated gray matter images were then
smoothed with an isotropic Gaussian kernel with a sigma of
3mm (~7mm FHWM). Finally, permutation-based nonparametric
testing (5000 permutations) was applied within the framework of
the general linear model. Contrasts examined in this analysis
were [musicians > nonmusicians], [guitarists > nonmusicians],
[beatboxers > nonmusicians], [guitarists > beatboxers] and vise
versa, while covarying out effects of gender, age, and nonverbal
IQ. Results were considered significant for P < 0.05, corrected for
multiple comparisons using threshold-free cluster enhancement
(tfce), which avoids using an arbitrary threshold for initial cluster
formation.

Results
We scanned 20 guitarists, 20 beatboxers, and 20 nonmusicians
as they listened to 3–5 s excerpts of novel guitar and beatbox
music that were produced by experts. These groups were
matched for age, basic cognitive, and hearing abilities (see
Table 1 for demographic details). At the end of scanning, all
participants rated the pieces of music they heard with respect
to ease of production (Fig. 1). Participants were not told about
these ratings in advance of the scan, but were asked to do
them after they completed the scans (along with other compo-
nents of the behavioral battery). For these behavioral ratings,
we observed a Group (nonmusician/beatboxer/guitarist) ×
Condition (guitar/beatbox pieces) interaction, F(2,57) = 119.3,
P < 0.001. Post hoc t-tests showed that guitarists rated the guitar
stimuli (M = 2.3, SD = 0.6) as easier to produce than beatboxing
(M = 4.3, SD = 0.6), t[19] = 10.3, P < 0.001, whereas beatboxers
showed found beatboxing (M = 2.4, SD = 0.6) easier to produce
than guitar music (M = 4.2, SD = 0.7), t[19] = 9.0, P < 0.001. We
also found that nonmusicians rated the beatboxing pieces (M =
4.0, SD = 0.7) as easier to produce than the guitar music (M =
4.5, SD = 0.5), t[19] = 4.2, P < 0.001. This may be because they
perceived a vocal stimulus to be easier to simulate than an
instrumental one.
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For both musical conditions relative to a resting baseline,
increases in activity were observed in primary auditory cortex
and extending into superior temporal gyrus, as well as in the
brainstem and the cerebellum (Supplementary Table S1 shows
peak activation for listening to each music condition in the 3
groups). We did not further examine any differences in the 2
musical conditions relative to rest, as we were interested in
how each group differentially responded to the 2 musical con-
ditions rather than to listening to music more generally.

Our first objective was to examine whether any regions
were sensitive to a Group (nonmusician/beatboxer/guitarist) ×
Music condition (guitar/beatbox) interaction. We found a set of
regions sensitive to this interaction (Supplementary Table S2
and Fig. 2B), including bilateral inferior frontal cortex, left infe-
rior parietal cortex, left inferior temporal cortex, lobule VI/VII in
both cerebellar hemispheres and in supplementary motor area
bilaterally (at P < 0.05 family-wise error [FWE] corrected at peak
voxel level).

One-sample t-tests were used to establish the pattern of
beatbox > guitar activity in each group (see Fig. 2A and
Supplementary Table S3). We restricted our analyses to the set
of regions that showed a significant group × condition interac-
tion, by applying an inclusive mask during analysis. Beatboxers
showed greater activity for [beatbox > guitar music] in the
superior temporal gyri, cerebellum (lobule VI), the supplemen-
tary motor area, and in the inferior frontal gyrus bilaterally, as
well as the left precentral gyrus. Only one region, the right mid-
dle occipital gyrus, showed greater activity for [guitar > beatbox
music]. Guitarists also showed increased activity in bilateral
superior temporal gyri for the contrast [beatbox > guitar music].
However, in the left inferior parietal cortex, left inferior frontal
cortex, the left inferior temporal cortex, and in the supplemen-
tary motor area, guitarists exhibited greater activity for [guitar >
beatbox music]. In contrast to beatboxers, who engaged dorsal
stream regions when listening to beatboxing, guitarists recruited
these regions when listening to guitar music. Nonmusicians did
not differentially activate dorsal stream regions for either beat-
boxing or guitar music (at a threshold of P < 0.05 FWE). Again,
for [beatbox > guitar music] in the nonmusicians, we observed
increases in activity in bilateral superior temporal gyri. No

regions were significantly activated by guitar music to a greater
extent that beatbox music.

To interpret differences by listening condition across the 3
groups, we conducted 2-sample t-tests comparing the [beatbox
> guitar music] contrast across guitarists and controls, beatbox-
ers and controls, and beatboxers and guitarists, with analysis
restricted to regions that showed the [group × condition] inter-
action described previously. The directionality of differences in
these regions was determined by extracting mean beta values
for the [beatbox > guitar] contrast from the cluster using the
marsbar toolbox for SPM, which were further analyzed using
SPSS. When brain responses of guitarists and nonmusicians for
the [beatbox > guitar music] contrast were compared (Fig. 2D
and Supplementary Table S4B), we observed differences across
left and right inferior frontal cortex, left postcentral gyrus, left
supplementary motor area, and left inferior temporal cortex.
This reflected the fact that guitarists showed a preference for
guitar music over beatboxing in these regions, whereas nonmu-
sicians showed the opposite preference. However, in the right
inferior parietal lobule, guitarists showed a stronger preference
for beatboxing relative to guitar music, while nonmusicians
showed no strong evidence of modulation. When comparing
activity for the [beatbox > guitar music] contrast in beatboxers
and nonmusicians (Fig. 2E and Supplementary Table S4A), at a
voxelwise threshold of P < 0.05 FWE, we only observed a signifi-
cant difference over the right cerebellum, where beatboxers
showed a stronger beatbox > guitar modulation than nonmusi-
cians. However, on reducing the statistical threshold to P < 0.05
FWE corrected at the cluster level, we observed a pattern of
expertise-driven responses, with beatboxers showing greater
activity for beatboxing over guitar music than nonmusicians
did in left inferior frontal cortex and left inferior parietal cortex
(Fig. 1E).

When we compared beatboxers and guitarists on the beat-
box > guitar music contrast (P < 0.05 FWE voxelwise), group dif-
ferences were observed in a range of dorsal stream regions
such as inferior frontal cortex bilaterally, as well as in the left
inferior parietal cortex (Fig. 2C, Supplementary Table S4C). We
then assessed the directionality of differences in these clusters.
In the left and right inferior frontal cortex, left and right cere-
bellum, left and right inferior temporal cortex, and in supple-
mentary motor area, cross-over effects of expertise were
observed with musicians showing greater activity for music
they could produce (Fig. 1C). In the left inferior parietal lobe,
guitarists exhibited a strong preference for guitar music, but
the difference between the 2 musical types was less marked in
the beatboxers. In the right and left middle occipital gyrus, as
well as in the right inferior parietal lobe, guitarists had greater
activity for beatbox > guitar music whereas beatboxers showed
greater activity for guitar > beatbox music. These regions conse-
quently showed decreases in activity for music musicians could
play. Finally, both groups exhibited a [beatbox > guitar music]
preference in the right superior temporal gyrus, but this was
substantially larger in the beatboxers.

To examine if there were any expertise-general effects asso-
ciated with musicianship we constructed the conjunction null
of 1) [guitarists > nonmusicians] for [beatbox music > rest] and
2) [beatboxers > nonmusicians] for [guitar music > rest]. These
contrasts were chosen to avoid including music that the musi-
cian played when looking for an expertise-general effect, as
that would simply lead to us noting the increases in activity
over dorsal stream region. We did not find any regions that
showed expertise-general effects, even when using a threshold
of P < 0.005 uncorrected for whole-brain comparisons.

Figure 1. Postscan behavioral ratings provided by each group when listening to

clips from the two music conditions (beatbox—gray bars/filled diamonds; guitar

—clear/unfilled diamonds). Each data point represents a participant (N = 20 in

each group), the bars depict the mean in both conditions. Lower ratings indicate

that the stimuli are perceived to be easier to produce.
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Given reports of somatopic representations in listening
(Gazzola et al. 2006), our next objective was to examine
whether musicians showed any effector-specific action-percep-
tion couplings in hand and mouth regions specifically (Fig. 3).
At the end of the listening scanning session, all participants
completed a functional motor hand/mouth localizer so we
could independently localize these sensorimotor regions in our
participants (see Materials and Methods for details about how
ROIs were constructed). We then assessed whether hemisphere
(left/right), effector (hand/mouth region) and group (nonmusi-
cian, beatboxer, guitarist) modulated [beatbox > guitar activity]
in these 4 ROIs (Fig. 3). We were interested in the interaction
between effector region and group, as we expected signal to be
different in different across brain regions. The interaction
between effector region and group was significant, F(2,57) =
3.61, P = 0.033. A main effect of hemisphere was not observed,
F(1,57) = 0.01, P = 0.93, and interactions of hemisphere with
group and effector region were also not significant (P > 0.7). For
follow-up analyses, we averaged activity over right and left
hand areas, and right and left mouth areas. In hand areas,
group membership had a significant effect on neural activity,
F(2,57) = 11.07, P < 0.001. Post hoc Bonferroni-corrected compar-
isons showed this was driven by a significant difference in
means between guitarists and nonmusicians, P = 0.005, as well
guitarists and beatboxers, P < 0.001. An expertise-driven prefer-
ence for guitar music relative to beatboxing was observed in
the guitarists in hand areas. Beatboxers and nonmusicians
showed no significant differences in beatbox > guitar activity in
the hand areas, P = 0.602. Activity in mouth areas was also
modulated by group, F(2,57) = 9.93, P < 0.001. This group differ-
ence was driven by beatboxers showing an increased prefer-
ence for [beatbox > guitar music], relative to the guitarists (P <
0.001), and to the nonmusicians (P = 0.012). Guitarists and non-
musicians showed comparable activity for beatboxing and gui-
tar music (P = 0.56). As an additional follow-up, we repeated
these analyses using individualized hand and mouth ROIs
instead of 10mm spheres. This confirmed a preference for the
music musicians can play, but this preference was more gen-
eral, that is, it was observed in both mouth and hand areas, in
guitarists and beatboxers (see Supplemental Data for details).

We then conducted data-driven ICA (see Materials and
Methods for further details) to examine spatiotemporal net-
work activity in musical perception, which allows us to
describe 1) the spatiotemporal networks engaged in musical

perception and 2) the effects of expertise on these networks.
Using this multivariate ICA approach allows us to derive a set
of spatial components and associated time courses for each
participant. Our analyses indicated the presence of 13 spatially
independent components (the number of components was
automatically estimated to avoid bias), of which 12 could be
considered non-noise (shown in Supplementary Fig. S1 and
Supplementary Table S5). We spatially correlated these net-
works with a set of reference networks which are described in
terms of their functional relevance (Smith et al. 2009) to derive
appropriate labels for them (Supplementary Fig. S1). If there
were no strong correlations with the reference set, we use anat-
omy to describe the network (C12). Typical caveats about
reverse inference hold for any approaches which involve infer-
ring cognitive function from brain activity (Poldrack 2011).
However, this approach does allow us test some claims about
underlying mental ontogeny, for example, examining whether
“sensorimotor” or “executive” influences on frontoparietal
regions are separable. Additionally, given the task-based nature
of the design we can at least validate some network functions,
such as whether the auditory network is responsive to
listening.

First, we ascertained which networks were modulated by our
tasks and whether they showed task-positive or task-negative
activity. At an uncorrected threshold of P < 0.05, 11 of the 12
networks showed significant effects of listening. Only C3, or the
right frontotemporo-parietal network, was not modulated by lis-
tening, P = 0.937. On applying a Bonferroni correction for 12
comparisons (corresponding to an alpha level of P < 0.05/12 or
P < 0.004), we observed that networks C1 (auditory), t(59) = 30.2,
P < 0.001, C4 (left frontotemporo-parietal), t(59) = 3.3, P = 0.002,
C11 (higher-level sensorimotor network), t(59) = 11.8, P < 0.001,
and C12 (bilateral temporal–opercular), t(59) = 5.5, P < 0.001,
showed significant increases in activity in the 2 listening condi-
tions compared with rest. Networks C5 (lateral visual), t(59) =
5.2, P < 0.001, C7 (default mode network), t(59) = −3.8, P < 0.001,
C8 (default mode network), t(59) = 6.1, P < 0.001, and C10 (occipi-
tal pole + lateral visual), t(59) = 3.2, P < 0.001, showed decreases
in activity for the 2 listening conditions relative to rest (Fig. 4).

Next, we probed whether activity in any of our 12 networks
was sensitive to the interaction between group × condition.
Bonferroni-corrected analyses (P < 0.004, or P < 0.05 corrected
for 12 comparisons) indicated that 6 of the 12 networks were
modulated by the interaction of group and condition (Fig. 5). Of

Figure 2. Depicts the results of univariate analyses conducted in SPM to explore group × condition modulation in listening activity. Panel (A) shows activity for the

beatbox > guitar music contrast in beatboxers, guitarists, and nonmusicians. Regions where activity for listening to beatboxing exceeds that of listening to guitar

music are shown in red–yellow, regions where activity for guitar music exceeds that of guitar music are shown in blue–light blue. This highlights that beatboxers and

guitarists show increases in activity over dorsal stream regions for music they can produce. Nonmusicians do not show a modulation by condition in these dorsal

stream regions, but do show increased activity for beatbox > guitar music in superior temporal cortex bilaterally. Note that analyses were inclusively masked by

regions that showed the group × condition interaction, which are shown in panel (B). Panel (B) depicts regions where beatbox > guitar activity is modulated by group

membership (beatboxer/guitarist/nonmusician), highlighted in red/yellow. These include left and right inferior frontal cortex, left postcentral gyrus and inferior parie-

tal regions, supplementary and cingulate motor areas, and inferior temporal cortex and posterior superior temporal gyri bilaterally. For panels (C–E), analyses were

inclusively masked by the regions depicted in panel (B). Panel (C) shows regions where beatboxers and guitarists have a differential response to the beatbox > guitar

music contrast. Areas highlighted in red–yellow show regions where there is positive instrument-specific modulation by musicians, and those in blue show negative

instrument-specific modulation. Bar graphs show mean beta values from highlighted clusters, bars in blue show the mean activity for beatbox > guitar music in gui-

tarists, the bars in green show the same for the beatboxers. Positive values indicate more activity for beatboxing, whereas negative values suggest more activity for

guitar music. Error bars denote ±1 standard error of the mean (SEM). Each data point represents an individual participant. Panel (D) shows regions where guitarists

and nonmusicians have a differential response to the beatbox > guitar music contrast. Bar graphs show mean beta values from highlighted clusters, bars in blue

show the mean activity for beatbox > guitar music in guitarists, the bars in purple show the same for the nonmusicians. Error bars denote ±1 SEM. Each data point

represents an individual participant. Panel (E) shows regions where beatboxers and nonmusicians have a differential response to the beatbox > guitar music contrast

(P < 0.05 FWE cluster-corrected). Bar graphs show mean beta values from highlighted clusters, bars in green show the mean activity for beatbox > guitar music in

beatboxers, the bars in purple show the same for the nonmusicians. Each data point represents an individual participant. Error bars denote ±1 SEM. Thresholded acti-

vation maps (P < 0.05 FWE) for each contrast described here are registered to and displayed on a cortical surface using Freesurfer. The cortical surface was generated

using the average T1 of the MNI-152 template. Activity in the cerebellum is not shown.
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these, task-positive networks C6 (sensorimotor), F(2,57) = 12.8,
P < 0.001 and C11 (higher-level sensorimotor network), F(2,57) =
43.9, P < 0.001, showed clear expertise-specific modulations.
Task positive network C1 (auditory), F(2,57) = 43.4, P < 0.001,
also showed modulation by expertise, but this effect was mod-
ulated by a main effect of condition on network activity. Task-
positive network C4 (left frontotemporo-parietal), F(2,57) = 12.5,
P < 0.001, showed a guitarist-specific expertise effect. Task-
negative networks C8 (default mode network), F(2,57) = 14.5, P <
0.001 and C9 (executive control), F(2,57) = 7.2, P = 0.002, also
showed expertise and effector-specific modulations. Below, we
break down these group × condition interactions further (see
Supplementary Table S6 for further details).

We first examined the 4 task-positive networks showing
effects of expertise (Fig. 5). In network C6 (sensorimotor), beat-
boxers showed greater activity for beatboxing > guitar music.
They significantly differed from guitarists, t(38) = 5.1, P < 0.001,
who showed greater activity for guitar > beatbox music in this
network. Nonmusicians did not show a strong modulation by lis-
tening condition in this network. There was a weak trend for
beatboxers to differ from nonmusicians in their beatbox > guitar
activity, t(38) = 1.7, P = 0.089. Guitarists and nonmusicians signifi-
cantly differed from one another with respect to their activity for
beatbox vs. guitar music in this network, t(38) = 3.3, P = 0.002. In
network C11 (higher-level sensorimotor), a similar pattern of
results was observed. Beatboxers showed greater activity for
[beatbox > guitar music]. Their activity was significantly different
to that seen in guitarists, t(38) = 8.0, P < 0.001, who showed
greater activity for guitar music > beatboxing. The nonmusicians

did not show a strong modulation by condition, and were sig-
nificantly different from guitarists, t(38) = 5.5, P < 0.001, and
beatboxers t(38) = 4.9, P < 0.001. In network C1 (auditory), the
pattern of activity indicates that there was expertise-specific
modulation, which was mediated by an auditory bias, with
greater activity in the [beatbox > guitar music] condition seen
in nonmusicians. This auditory bias may be driven by the fact
that beatboxing is a vocal signal, containing information about
factors such as the identity of the speaker and emotional
state. The nonmusician preference for [beatbox > guitar music]
was stronger than that of guitarists, t(38) = 5.6, P < 0.001. Guitarists
did not show a strong bias for beatboxing, and activated this net-
work equally for guitar music and beatboxing. Beatboxers showed
stronger activity for [beatbox > guitar music] in this network rela-
tive to guitarists, t(38) = 9.2, P < 0.001, and nonmusicians, t(38) =
3.7, P = 0.001. Therefore, in networks C1, C6, and C11, musical
experts showed significantly greater activity in the condition
where they could produce the music. In task-positive network C4
(left frontotemporo-parietal), only guitarists had greater activity
for [guitar > beatbox music], differing significantly from both beat-
boxers, t(38) = 4.4, P < 0.001, and nonmusicians, t(38) = 4.0, P <
0.001. Here, only guitarists showed significantly greater activity for
the musical condition where they have experience producing
music.

We then broke down the group × condition interactions in
task-negative networks C8 and C9 (Fig. 5), where participants
showed more activity during rest rather for listening to music
(Fig. 4). In network C8 (default mode network), guitarists
showed greater activity for [beatbox > guitar music], whereas

Figure 3. Depicts the results of univariate ROI analyses, where mean beta values for left and right hand and mouth regions were extracted for beatbox > guitar music

in each participant. Positive values indicate more activity for beatboxing, whereas negative values suggest more activity for guitar music. Error bars depict ±1 stan-

dard error of the mean. Each data point represents an individual participant. Nonmusicians (NM) are represented by filled circles, beatboxers (BB) by filled squares

and guitarists (G) using filled triangles. These graphs clearly show that guitarists, but not the other 2 groups, show greater activity for guitar music in hand regions. In

the mouth regions, beatboxers, but not the other 2 groups, show greater activity for beatboxing. The specific ROIs we sampled from are highlighted in the figure, and

were derived from group activity for hand and mouth movements.
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beatboxers showed greater activity for [guitar music > beatbox-
ing], t(38) = 4.9, P < 0.001. Nonmusicians did not show this mod-
ulation. Nonmusicians differed significantly from guitarists,
t(38) = 3.7, P = 0.001, and showed a trend for a difference from
beatboxers, t(38) = 2.0, P = 0.058. Network C9 (executive control)
showed a similar inhibitory pattern. Significant differences
were seen between guitarists and beatboxers, t(38) = 3.7, P <
0.001, guitarists and nonmusicians, t(38) = 2.2, P = 0.036, but not
between beatboxers and nonmusicians, t(38) = 1.6, P = 0.11, for
the [beatbox > guitar music] contrast. This indicated that musi-
cians had significantly more inhibitory activity when listening
to music they could produce. Taken together, these multivari-
ate analyses reveal that specific effects of musical expertise are
reflected in the engagement of domain-general attention/exec-
utive control networks and auditory-motor systems.

The set of regions where we observed expertise-related
functional differences resemble those where a previous VBM
study found gray matter differences in classical musicians
(Gaser and Schlaug 2003). We consequently ran a VBM analysis
to examine local changes in gray matter. However, we did not
find any structural differences that survived P < 0.05 across
groups (whole-brain-corrected for multiple comparisons using
threshold free cluster enhancement, note that one-tailed differ-
ences in the beatboxer or guitarist > nonmusician contrasts
exceed a P of 0.80), suggesting that local changes in gray matter
are an unlikely explanation for the functional differences we
obtain in sensorimotor regions. Structural differences in classi-
cal musicians are pronounced when musical training is started
before 7 years of age (Steele et al. 2013; Vaquero et al. 2016).
The later age of onset of training for nonclassical musicians

(Table 1) might explain the lack of structural differences in
these groups.

Discussion
Neural systems recruited during the perception of music are
modulated by previous sensorimotor experience. These results
are consistent with findings suggesting that motor regions in the
dorsal stream are recruited for listening to music (Grahn and
Brett 2007; Chen et al. 2008b). However, we demonstrate that
this increased sensorimotor activity is seen in an instrument-
specific manner, with expert guitar players responding selec-
tively to novel guitar sequences, and beatboxers responding
selectively to novel sequences of beatboxing. This is the first
time an instrumental-expertise specific neural effect within
musicians has been established in nonclassical musicians.
Expertise-related increases in activity are seen in the inferior
frontal cortex and presupplementary/supplementary motor area
bilaterally, as well as in left inferior temporal gyrus and inferior
parietal cortex. By using network-based analyses, we further
demonstrate that musical training is associated with expertise-
specific recruitment of auditory and sensorimotor networks, and
inhibition of domain-general default mode and executive control
networks. Therefore, these results are a powerful demonstration
of the idea that auditory perception is not simply driven by the
properties of an auditory stimulus, but strongly influenced by
the auditory-motor knowledge and experience that the listener
brings to perception.

The sensorimotor regions differentially recruited by musi-
cians have been found to play a role in higher-level motor

Figure 4. Depicts activity in for listening to guitar music (black) and listening to beatboxing (gray) in the 12 non-noise independent components. Networks were

derived using a group concatenation approach implemented in FSL MELODIC, and dual regression was used to calculate cope values for each network in each partici-

pant for the contrasts beatbox > rest and guitar music > rest. Networks are labeled with a number as well as a functional descriptor based on their spatial distribution

(see Supplementary Fig. S1). Graphs show mean beta values for these 2 contrasts, and error bars depict ±1 SEM. Networks C1 (auditory), C11 (higher-level sensorimo-

tor), C12 (temporal–opercular), and C4 (left frontotemporo-parietal) show increases in activity when listening to music, whereas networks C5 (visual), C7 (default

mode network), C8 (default mode network), and C10 (visual) show decreases in activity when listening to music.
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control and co-ordination. Regions in inferior frontal cortex are
involved in creating motor plans that are then executed by
motor cortex, whereas those in inferior parietal cortex have a
role in predicting the sensory consequences of movement
(Dhanjal et al. 2008b). Recently, we have argued that the area at
the boundary between the presupplementary motor area and
supplementary motor area support flexible engagement of sen-
sorimotor processes to guide auditory perception (Lima et al.
2016). Our present results provide further support to this argu-
ment, suggesting that activity in these regions is modulated by
experience in a specific manner. Finally, we did also see an
instrument-specific recruitment of left inferior temporal cortex
during perception, which we had not anticipated. This region is
typically engaged by language tasks that involve complex
audiovisual links, such as picture naming (Krishnan et al. 2015)
and reading (Price and Devlin 2003; Price 2012). This suggests
that this region may be performing complex retrieval of audio-
visual associations, such as the gestures associated with musi-
cal production.

An important question is whether our results might reflect
sensorimotor engagement and expectancies, or a perceptual
bias to the type of music that the musicians are familiar with.
It is noteworthy that we did not observe suprathreshold
instrument-specific effects over regions in the anteroventral
stream, when comparing the 2 groups of musicians, or when
comparing musicians to nonmusicians. This suggests that the
most fundamental difference between these groups is not in

how participants are engaging with the stimuli as a sound, that
is, that musicians are not simply paying more attention to
sounds they are more familiar with. It is rather suggestive, we
argue, of a more specific mechanism—they might be engaging
sensorimotor mechanisms more strongly when their previous
experience provides them with the sensorimotor repertoire to
do so. In addition, we had an a priori hypothesis about somato-
topic increases in activity in primary motor and somatosensory
regions as a consequence of sensorimotor experience. We
therefore closely examined neural activity for perception in
hand and mouth regions. We found that beatboxers recruited
mouth areas when listening to beatboxing, and guitarists
recruited hand areas when listening to guitar music. Our
results therefore support effector-specific activity during listen-
ing, arguably driven by sensorimotor expectancies created by
long-term experience producing and perceiving sound. Within
a framework that ascribed no role to sensorimotor processing,
it would be very difficult to explain why we would see this
effector-specific difference.

A significant issue in the literature is whether effects of
expertise are driven by sensorimotor or domain-general atten-
tional factors, and this has been very difficult to address using
standard univariate analyses. Areas that are thought to have
sensorimotor functions and areas that play a role in executive
control overlap significantly. Consequently, to address this
issue, we used ICA to clarify the roles played by domain-
general networks during music listening. ICA is particularly

Figure 5. Demonstrates group × condition interactions in 6 of the 12 non-noise independent components derived using FSL MELODIC. The insets below each network

label show regions included in the network, with regions that are positively covarying in white and those that show negative covariation in black. These are projected

on the fsaverage cortical surface (for further details, such as activity on the medial surface, see Supplementary Fig. S1). Dual regression was used to derive subject-

specific time courses for each of these 6 networks, and cope values for each network in each participant were calculated for the contrast beatbox > guitar music. In

these graphs, values greater than 0 represent a preference for beatboxing relative to guitar music, whereas values less than 0 depict the opposite preference. Mean

cope values for each group are shown by the bars, and the data points represent individual participants. Error bars depict ±1 SEM. Nonmusicians (NM) are depicted

using filled circles, beatboxers (BB) with filled squares, and guitarists (G) using filled triangles. Musicians recruit auditory and sensorimotor networks as they listen to

music they can produce, while inhibiting spatially overlapping default mode network (DMN) and executive control networks.
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sensitive to the presence of domain-general networks, as it
unmixes complex signals to reveal the presence of separable
spatiotemporal activity (which can be canceled out in tradi-
tional univariate analysis) (Leech et al. 2012; Braga et al. 2013).
Although previous work has examined functional connectivity
during rest in musicians (Fauvel et al. 2014; Klein et al. 2015;
Palomar-García et al. 2016), we have assessed task-level net-
work level modulations. Similar independent component
analyses have been conducted using EEG (Nolden et al. 2017),
and a recent study used a ROI-based ICA approach with fMRI
data (Burunat et al. 2017). However, here we go beyond simple
musician versus nonmusician comparisons and capture whole
brain network-level modulations in 3 different groups. With
respect to expertise, we again did not find a domain-general
advantage for musicians versus nonmusicians. Rather, we
observed instrumental-expertise effects, some of which reca-
pitulate findings from the univariate analyses. For example, we
found that the set of regions we observed in the univariate
analysis, including bilateral inferior frontal cortex, inferior pari-
etal cortex, and supplementary motor areas were present
within one separable network (C11). Interestingly, the spatial
distribution of this network does not strongly correlate with
any one single network from a reference set of networks deter-
mined from studies of adults resting in the scanner (Smith
et al. 2009), indicating that it is not identical to previously
established executive control, language, or motor networks.
The reference networks are derived from healthy adults, unse-
lected for any particular expertise. However, coactivation of
this set of regions has also been observed in studies of visuo-
motor expertise (Calvo-Merino et al. 2005; Calvomerino et al.
2006), and is sometimes termed the action observation network
(Cross et al. 2009). We therefore hypothesize that the coactivity
of these regions might be driven by sensorimotor experience,
and not domain-general factors. Somewhat surprisingly, the
set of regions that become active in experts assessing their
domain of expertise is almost identical across expert groups
such as dancers and musicians, as well as within these groups
(ballet dancers/capoeira dancers or beatboxers/guitarists)
despite the different input to these brain regions and very dif-
ferent forms of training. In future studies, it would be worth
exploring whether this network can be observed during rest in
these expert groups, or whether the timecourse-coupling in
these regions is driven by one’s evaluation of expertise.

However, our multivariate analysis also reveals the presence
of other networks that are modulated by expertise, which are
not obvious from the univariate analysis. For instance, as musi-
cians listened to music played on instruments on which they
have expertise, an auditory-motor network (C1) and a sensori-
motor network (C6) were recruited. Additionally, musicians
also inhibited domain-general networks while listening to
music they could produce, such as a default mode (C8) and
executive control networks (C9). This instrumental-specific
modulation of attentional networks is notable, as it suggests
that attentional networks respond specifically to the presence
of familiar regularities in a musical style. Taken together, the
univariate and multivariate results indicate that long-term sen-
sorimotor experience has a distributed effect on both sensori-
motor and domain-general brain networks, with the effect of
expertise being broadly facilitatory for sensorimotor networks
and inhibitory for domain-general ones. This would suggest
that instrument-specific responses do not merely reflect
increases in activity in auditory-motor networks, or changes in
domain-general attention networks, but a complex combina-
tion of the two. Such overlapping changes are exceedingly

difficult to pull out at a behavioral level, and our results suggest
using a network level approach would greatly benefit our
understanding of the interactions between domain-general and
domain-specific systems. For instance, in future studies, it
would be particularly intriguing to address how sensorimotor
and attentional networks interact. One possibility is that the
spontaneous engagement of dorsal stream regions would result
in inhibition of attentional networks. On the other hand, it
could be the case that domain-general networks respond to the
presence of learned regularities in music one is familiar with,
and this would then lead to the engagement of regions that
those regularities are associated with. Network-level changes
would also be interesting to explore in longitudinal studies of
expertise, to examine when and which networks change over
time.

Why might musicians recruit sensorimotor regions during
perception? We tried to make our task as naturalistic as possi-
ble, by asking participants to listen to the music in the absence
of any external task. This was done to limit any attentional or
working memory demands, as well as limit motor activity due
to motor priming. We also know that participants were not
actively moving their hands or mouths as they listened.
However, although our instructions to the 3 groups were identi-
cal, it is plausible that musicians could have been trying/or
been unable to avoid recognizing or simulating aspects of the
music they were listening to. Consequently, our interpretation
of our sensorimotor activity is that internal motor models are
automatically generated when participants listen to sounds
they are experts at producing. This generation could be a con-
sequence of long-term associations built between perception
and production systems (Heyes 2010), and would reflect the
richer sensorimotor representation for music in experts.
Another possibility is that this activity might support working
memory demands, which would be enhanced for music one
can produce. Another explanation is that training allows the
musicians to free themselves from inhibitory control, and use
sensorimotor regions to make better predictions about what
they are hearing (Pinho et al. 2014). Finally, we might argue
that musicians deliberately try to simulate or learn about music
they can produce, and it is this deliberate exertion that is
reflected in the dorsal stream activity. Future studies are
needed to pull apart these different explanations, and could
involve assessing the behavioral and neural responses of these
groups when different task demands are imposed, or by provid-
ing explicit directions to simulate or learn music. For example,
using a dual-task paradigm, we could assess whether inhibiting
the automatic engagement of these sensorimotor processes
would lead to differences in auditory perception of music that
musicians can produce.

A related issue is the functional relevance of sensorimotor
activity, as a long-standing debate in the speech domain is
whether sensorimotor activity during speech perception is epi-
phenomenal or necessary (for a recent review, see Skipper et al.
2017). Some authors take the middle ground, that is, sensori-
motor activity during speech perception may be advantageous
in certain situations, such as listening in noise (Davis and
Johnsrude 2007). It is clear that top-down influences on percep-
tion, such as prior experience, allow listeners to make better
predictions about ambiguous or unclear speech. However, in
this case, we used a sparse-sampling design to limit noise, and
it is difficult to imagine that musicians found the music they
could produce more ambiguous to perceive than music they
could not. However, there are studies suggesting that even
when listening is easy (non-noisy situations), TMS to
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articulatory motor areas can disrupt perception (Mottonen
et al. 2013), or change the excitability of motor cortex (Watkins
et al. 2003; Panouillères et al. 2018). Skipper et al. (2017) suggest
that the context provided by naturalistic speech perception
tasks can increase the difficulty of the listening situation, and
therefore lead to greater recruitment of sensorimotor regions.
For example, adults showed greater activity in motor regions
when listening to nonwords, relative to listening to words, per-
haps reflecting the fact that they build sensorimotor models for
words they have not encountered previously. Similarly, we
believe participants might automatically simulate motor mod-
els for the style of music they had experience producing. There
is some evidence that such internal simulation of movement
typically makes aspects of perception, imitation, or learning
easier. For example, Buccino and colleagues showed increases
in activity in ventral premotor, inferior frontal and inferior pari-
etal cortices as novices learnt to play guitar music (Buccino
et al. 2004). Disrupting activity in the inferior frontal gyrus has
been shown to impair covert imitation (Catmur et al. 2009).
There is also behavioral work that supports the idea that inter-
nal simulation may improve aspects of perception, for instance,
imitation of accented speech is known to improve intelligibility
(Adank et al. 2010). Being able to covertly generate a motor
model is associated with improved long-term auditory memory
(Schulze et al. 2012). With respect to music, Keller (2012) has
argued that internal simulation benefits action sequencing, co-
ordination, timing accuracy, and motor force control during
performance. We consequently hypothesize that the flexible
engagement of these sensorimotor areas supports and shapes
learning from the stimulus. The nature of our musical stimuli,
which were novel and non-nameable, is therefore likely to
have increased reliance on sensorimotor representations in
nonmusicians. It is possible that these representations are less
important when stimuli can be labeled. Future studies to
explore the specific role of sensorimotor activity during percep-
tion could be done by making beatboxers and guitarists engage
in specific articulatory suppression, or by using techniques like
transcranial magnetic stimulation to target mouth/hand repre-
sentations, while they perform perceptual tasks. This would
allow us to assess the direct influence exerted by sensorimotor
activity on musical listening behavior.

The presence of an expertise-specific neural effect in non-
classical musicians adds in important ways to previous evi-
dence for functional specificity in studies that have tested
classical musicians. For example, in a study where violinists
were compared with actors, Dick et al. (2011) demonstrated
that violinists were more likely to recruit premotor regions
bilaterally, right inferior frontal cortex, and regions in the cere-
bellum when listening to violin excerpts relative to speech. In
another study, a small sample of 9 violinists and 7 flutists
showed increased activity for trained relative to untrained
music in the precentral gyrus, inferior parietal cortex and sup-
plementary motor area (Margulis et al. 2009). Our results are
broadly consistent with these studies, but we demonstrate this
effect for novel music in nonclassical musicians, who are
largely self-taught. In addition, we demonstrate expertise-
driven effector-specific modulation in hand/mouth areas dur-
ing music perception, a question that has not been addressed
by previous studies. Furthermore, in Dick et al. (2011) and in
Margulis et al. (2009), comparisons are made within musicians,
with no comparison to nonmusicians. This does not allow for
the assessment of whether these effects are only observed in
trained groups. Our results show that it is not musicianship
generally, but instrument-specific experience, that modulates

the response of dorsal stream regions to music. This strongly
indicates that sensorimotor experience (and not the formal
aspects of classical training such as ear training or musical the-
ory) is the key factor in building these links.

In summary, our results establish that long-term sensori-
motor experience relates to a stronger engagement of dorsal
stream regions during perception, a finding that is particularly
important to understanding how individual experiences might
shape brain activity. We hypothesize this activation represents
automatic activation of a unique kind of sensorimotor repre-
sentation, one that is unavailable to those without the same
sensorimotor experience. However, such representations are
not crucial to perception, as nonmusicians are able to both per-
ceive and make judgments about music. Rather, they may be
particularly useful for imitation or learning. This is a fruitful
direction for future studies to explore. Additionally, although
our focus has been the cross-sectional comparison between
nonclassical musicians, which was ideal as assess the corre-
lates of long-term experience, an exciting avenue for future
work is to implement a training/longitudinal design to firmly
establish the causal direction of these effects. Our focus on dor-
sal stream regions being recruited by specific experience will
also help reconcile diverse findings in the music literature,
where some studies find motor activity for listening and others
do not. Experience with stimulus type, and ability to generate
sensorimotor expectations about the stimuli, might uniquely
determine the presence of motor activity (Lima et al. 2016). An
important implication of this finding for models of auditory pro-
cessing is that it is not simply a task that modifies neural activ-
ity in dorsal stream regions, but also an individual’s prior
expectations and experience that modifies the recruitment of
dorsal stream regions. In addition to furthering our understand-
ing of perception, our use of differently trained musician groups
also allows us to evaluate the generalizability of learning that is
a consequence of musical experience. Our findings indicate that
different styles of musical expertise lead to distinct neural
responses for the learned skill, however, enhanced responses
occur within the same systems. This suggests that the neural
effects of expertise are closely confined to learned behavior, but
also that musical expertise broadly engages very similar areas.
Future studies will be necessary to explore how the nature of
representations in these regions differ for different musical
styles, which is likely to have consequences for how we interpret
the generalizability of different forms of musicianship.
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